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Abstract

Geoscience BC’s QUEST project was designed to stimulate mineral exploration in
the Quesnellia Terrane of British Columbia. During 2007, about 2100 new lake and
stream sediment samples were collected, and almost 5000 older drainage sediment pulps
were re-assayed, to improve the geochemical data base in the project area. One of the
programs initiated by QUEST in 2008 was to discover what might be learned from a
systematic analysis and evaluation of the new multi-element geochemical data. This
report describes the results of one such study.

Since the samples were collected from different media and analysed by different
laboratories over nearly 30 years, it was first necessary to assemble the “best picks”
from each sub-population, and then to relevel the various surveys, for each element,
to provide uniform blends. Estimates were also made of missing data over some small
areas. As a result, syntheses of the various surveys are now available on uniform grids,
over a common area, for as many as 42 of the elements. These can form the basis for
systematic analysis.

As a start, we have applied various clustering methods to the 42 element data. The
results show marked correlations with geology. This leads to the idea of using a neural
network to model the geochemistry in areas where the geology is known, and then
to apply this model to infer the bedrock geology in the non-outcropping areas. The
resulting inferred geology, wherever geochemistry is known, is then almost identical
to mapped geology in areas of outcrop, and blends well with mapped geology along
the margins, where there is no geochemistry. These results show that geochemistry
combined with neural networks can provide a powerful tool for mapping bedrock geology
concealed by a veneer of glacial overburden in the QUEST project area.

∗BW Mining, Boulder, Colorado, USA
†BW Mining, Brighton, Sussex, UK
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1 Introduction

Geoscience BC’s QUEST project was designed to stimulate mineral exploration in the Ques-
nellia Terrane running through Prince George, British Columbia (see Figure 1). This is a
highly prospective belt of rocks that to date has had little exploration because of the till
and lacustrine cover left behind by retreating glaciers (see Figure 2 and References [4, 5]).

During 2007, Geoscience BC compiled publicly available topographic, geological, geo-
physical, geochemical, and mineral occurrence data for a 150,000 square kilometer area
centered on Prince George. In addition, new airborne gravity and electromagnetic surveys
were flown to provide a geophysical framework for further exploration in this area [2]. Mean-
while, Geoscience BC also collected about 2100 new lake and stream sediment samples and
re-assayed almost 5000 older drainage sediment pulps to improve the geochemical data base
in the QUEST project area [3].

During 2008, while further surveys were being flown or collected to the west of QUEST,
an effort was mounted to interpret and try to extract maximum information from the 2007
QUEST surveys. One of these programs, which is described in this report, was designed to
analyse the new multi-element geochemical data and to see what might be learned from a
systematic evaluation of these data.
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Figure 1: Location of the QUEST Project area in Central British Columbia.

3 of 26



Figure 2: Surficial geological map of the QUEST project area, showing a few of the towns.
The pale yellow areas represent the Quaternary overburden. The outline of the airborne
gravity and electromagnetic surveys is marked in black. The map projection is UTM Zone
10 in NAD83.
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Since the various geochemical surveys were collected from different sample media and
analysed by different laboratory techniques over a period of nearly 30 years, the first step
was to assemble the “best picks” of measured values from each sub-population for each
element. Next, it was necessary to relevel the various surveys to give a satisfactory blend.
Of the 42 elements treated, 17 have the same coverage, while the remaining 25 have reduced
coverage to varying extents. For analysis it is more convenient if all the elements have the
same coverage. The next step was to estimate values for these 25 elements over the small
areas of missing data.

The resulting full suite of 42 element assays can be analysed in various ways. Clustering
is a classic approach. Two such clusterings have been derived. Each resembles the mapped
surficial geology. This leads to the idea of building a model of the geochemistry in the
outcropping areas, where the geology is known, and applying it to infer bedrock geology in
the till-covered areas. For this purpose a neural network has been used to map 42 element
assays as inputs, to a probability distribution over geological formations as output. The
network was trained in the region where both geology and geochemistry are known. The
resulting inferred geology, wherever geochemistry is known, is almost identical to mapped
geology in areas of outcrop, and blends well with mapped geology along the margins, where
there is no geochemistry. These results show that geochemistry largely characterises the
geological formations in exposed areas, and provides corroboration for the neural network
inferences in the covered areas.

2 Selection of elements

The three principal analytical methods used to determine trace elements in the QUEST
stream and lake sediments are atomic absorption spectrometry (AAS), aqua regia induc-
tively coupled plasma emission–mass spectroscopy (ICP-MS), and instrumental neutron
activation analysis (INAA).

AAS was the method routinely used for federal and provincial government funded
drainage sediment surveys conducted before 1999, but this has now been superceded by
the more sensitive ICP-MS and INAA techniques. INAA estimates the “total” element
concentration, but is inadequate for measuring elements such as lead and copper, which are
best determined by aqua regia ICP-MS. While aqua regia digestion is effective for dissolving
gold, carbonates and sulphides in a sample, it can only partially break down alumino-silicate,
oxide and other refractory minerals such as barite.

Since the various geochemical surveys in the QUEST area were collected from different
sample media (lake and stream sediments) and analysed by different laboratory techniques
over a period of nearly 30 years, the first step in the systematic evaluation of the geochem-
istry was to assemble the “best picks” of measured values from each subpopulation for each
element.

Tables 1 and 2 show the preferred analytic method and detection limits for each of the
42 elements that were incorporated in the present study. Six further elements (Eu, Ta, Te,
W, Yb and Zr) were found to have poor coverage and therefore could not be used in this
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Element Symbol Detection Unit
Silver Ag 0.002 ppm
Aluminum Al 0.01 %
Bismuth Bi 0.02 ppm
Calcium Ca 0.01 %
Cadmium Cd 0.01 ppm
Copper Cu 0.01 ppm
Gallium Ga 0.2 ppm
Mercury Hg 5 ppb
Potassium K 0.01 %
Magnesium Mg 0.01 %
Manganese Mn 1 ppm
Molybdenum Mo 0.01 ppm
Nickel Ni 0.1 ppm
Phosphorus P 0.001 %
Lead Pb 0.01 ppm
Sulphur S 0.02 %
Selenium Se 0.1 ppm
Strontium Sr 0.5 ppm
Titanium Ti 0.001 %
Thallium Tl 0.02 ppm
Vanadium V 2 ppm
Zinc Zn 0.1 ppm

Table 1: The 22 elements for which ICP-MS was the preferred analytic method.

study.
For gold, INAA was the preferred analytical technique, because ICP-MS uses a very

low sample weight (< 1 gram). Unfortunately, the stream sediment results for the McLeod
Lake quad sheet, 93J, did not include INAA information, therefore the relatively “weaker”
ICP-MS determinations were substituted from this quad sheet into the final selected data
set.

3 Levelling and blending

Figure 3 shows an image of the raw gold assays, after gridding of individual sheets, but
before any levelling is applied. This illustrates the problem that we are dealing here of
multiple mismatched populations. The McLeod Lake quad sheet, for example, which is
roughly centred on 500E/6050N, is clearly dropped down in relation to its neighbours.
There are similar mismatches with all the other elements.

There is a fundamental problem in levelling geochemical data as compared with, say,
airborne geophysical data. Because of the wide turning circle of an aircraft, airborne surveys

6 of 26



Figure 3: Raw gold assays from stream and lake sediments in the QUEST Project area.
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Element Symbol Detection Unit
Arsenic As 0.5 ppm
Gold Au 2 ppb
Barium Ba 50 ppm
Bromine Br 0.5 ppm
Cerium Ce 5 ppm
Cobalt Co 5 ppm
Chromium Cr 20 ppm
Cesium Cs 0.5 ppm
Iron Fe 0.2 %
Hafnium Hf 1 ppm
Lanthanum La 2 ppm
Lutetium Lu 0.2 ppm
Sodium Na 0.02 %
Rubidium Rb 5 ppm
Antimony Sb 0.1 ppm
Scandium Sc 0.2 ppm
Samarium Sm 0.1 ppm
Terbium Tb 0.5 ppm
Thorium Th 0.2 ppm
Uranium U 0.2 ppm

Table 2: The 20 elements for which INAA was the preferred analytic method.

commonly overlap, making the blending of adjoining surveys relatively easy to accomplish.
The opposite is generally true of geochemical surveys, which seldom overlap. To overcome
this problem, the following general procedure was applied. In order to level a pair of
neighboring grids, or assemblages of grids, narrow strips were selected on either side of
the join, including any overlapping region, if such existed. This provides two neighboring
sets of assay samples, whose statistics can be compared. Because of the proximity of the
samples, even if they are not overlapping, it can reasonably be assumed that they come from
approximately the same population. This would not necessarily be true if the statistics of
complete neighboring sheets were compared.

To compare the statistics of such neighboring border regions, the nine decile points
were calculated for each of the two regions. An example, in the case of gold, is given
in Figure 4. This shows a scatter plot of matching decile points when the procedure was
applied to bordering strips of assemblages of lake and stream samples, after first applying the
same procedure to border strips from the various component lake and stream regions. The
straight line (which was fitted by minimising perpendicular distance, to maintain symmetry
between populations) indicates the adjustments needed to one or the other or both, in level
and gain, to produce a satisfactory blend. After this adjustment, a line fitted to the adjusted
populations should have unit slope and pass through the origin.
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Figure 4: Scatter plot of matched decile points from neighboring strips of the streams and
lakes populations. The straight line y = mx+c has parameters m = 0.4971 and c = 0.1415.

Note that this correction corresponds to a linear transformation z′ = az+b in log space.
If a = 1 this is a simple shift, corresponding to a constant positive scalar multiplication
of the original assays. Otherwise, such a transformation still corresponds to a rescaling of
the original assays, but one whose amplitude increases (a > 1) or decreases (a < 1) with
the assay level. Note that, according to this procedure, the exact distributions of outliers,
in the top 10% or bottom 10%, have no effect when calculating the parameters a and b.
However, once these relevelling parameters have been determined by the positions of the
decile points, we apply the same relevelling procedure to all samples, including outliers.

Figures 5, 6 and 7 show the result of applying the process to gold, copper and molyb-
denum. After relevelling, the various component grids were stitched together using a cosine
taper. The overall level has been taken from the most recent stream sediment survey,
collected in 2007 from quad sheet 93O.

4 Missing data

Of the 42 elements treated in this study, 17 have the same maximum coverage, comprising
the area shown equally in Figure 5 for gold and Figure 6 for copper. These 17 elements are

As, Au, Ba, Co, Cr, Cu, Fe, Hg, La, Mn, Ni, Pb, Sb, Sc, Th, U, Zn.

Each of the remaining 25 elements, namely Ag, Al, Bi, Br, Ca, Cd, Ce, Cs, Ga, Hf, K, Lu,
Mg, Mo, Na, P, Rb, S, Se, Sm, Sr, Tb, Ti, Tl, V, has reduced coverage to a varying extent.
An example is shown in Figure 7 for molybdenum. For the purposes of analysis, however,
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Figure 5: Levelled gold assays from stream and lake sediments.
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Figure 6: Levelled copper assays from stream and lake sediments.
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Figure 7: Levelled molybdenum assays from stream and lake sediments.
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it would be convenient if all elements had the same coverage. Rather than exclude certain
elements, or restrict attention to the smaller area where all 42 are present, it is better to
estimate missing values if this can be achieved in a satisfactory way.

This may seem a difficult task. It is well known, however, that there are strong multi-
variate statistical relations between the various elements, so that much of the information
in the distribution of the full set of 42 elements may already be carried by the distribution
of one or more subsets, for instance by the subset consisting of the 17 elements displayed
above. The nature of these relations can be investigated by noting that there is a large area
where all 42 elements are present. That area provides a basis for modelling the statistical
dependency of the remaining 25 elements on the given 17.

There are a number of approaches to a missing data problem of this type. The one we
chose to adopt is based on neural networks. For each of the 25 elements with restricted
coverage, a neural network was trained to predict the assay value of that element, on the
basis of the assay values of just the 17 elements displayed above. The result for molybdenum
is shown in Figure 8.

It is important to observe that all values in Figure 8 are estimated, in the sense that
they are neural network predicted values, based on just the 17 elements, including where
measured values are known. Comparison of the two grids in the area of common coverage,
shows just how well it is possible to approximate the measured data of Figure 7 with the
predicted data of Figure 8. This correspondence provides confidence in the estimated values
where no measured data are available. For analytic purposes, however, we have always used
measured values when available.

Error bars

The modelling techniques used in this approach to the missing data problem are described
in [8, 9]. Thus the assay at a given location, conditional on the local measured assays of the
given 17 elements, is modelled by a log normal distribution, whose local mean and standard
deviation are determined by the neural network as functions of the 17 input values at the
given location. Figure 8 shows the mean of the predicted distribution at each location. The
standard deviation, which is also modelled, provides an error bar varying over the grid.
Table 3 shows the average width, over the grid, of the error bar for each of the estimated
elements. These are arranged in order of increasing size of the error bar. The ordering gives
an indication of the relative ease or difficulty of predicting the given element on the basis of
these 17 elements, with gallium as the easiest and titanium as the hardest. Molybdenum,
for example, is seen to be one of the more difficult elements on this basis. It should be
remembered, however, that these error bars are also dependent on data quality, which is
variable between the elements.

The last two columns of Table 3 translate additive or subtractive logarithmic errors into
upper or lower percentage errors in actual assay values. For example, the logarithmic error
of 0.0333 for gallium, when raised to the power 10, corresponds to a factor of 1.080. This
either divides or multiplies the assay values themselves to produce an error of between 7.4%
below or 8.0% above.

13 of 26



Figure 8: Measured and estimated molybdenum assays.
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Element Symbol log10 error Lower error Upper error
Gallium Ga 0.0333 7.4% 8.0 %
Aluminum Al 0.0434 9.5% 10.5%
Cerium Ce 0.0443 9.7% 10.7%
Samarium Sm 0.0535 11.6% 13.1%
Rubidium Rb 0.0626 13.4% 15.5%
Sodium Na 0.0645 13.8% 16.0%
Vanadium V 0.0700 14.9% 17.5%
Thallium Tl 0.0726 15.4% 18.2%
Cesium Cs 0.0740 15.7% 18.6%
Phosphorus P 0.0746 15.8% 18.7%
Bismuth Bi 0.0759 16.0% 19.1%
Magnesium Mg 0.0832 17.4% 21.1%
Lutetium Lu 0.0878 18.3% 22.4%
Hafnium Hf 0.0922 19.1% 23.7%
Cadmium Cd 0.0944 19.5% 24.3%
Silver Ag 0.1027 21.1% 26.7%
Terbium Tb 0.1074 21.9% 28.0%
Potassium K 0.1077 22.0% 28.1%
Strontium Sr 0.1218 24.5% 32.4%
Sulphur S 0.1320 26.2% 35.5%
Calcium Ca 0.1376 27.2% 37.3%
Selenium Se 0.1394 27.5% 37.8%
Molybdenum Mo 0.1492 29.1% 41.0%
Bromine Br 0.1604 30.9% 44.7%
Titanium Ti 0.1948 36.1% 56.6%

Table 3: Table showing the average sizes of error bars when estimating the 25 partially
missing elements.

5 Cluster analysis

Once the 42 elements had been levelled and any missing samples had been estimated as de-
scribed in the last two sections, it was decided to try and condense all this information into a
smaller number of interpretation maps. The classical way of doing this is by cluster analysis,
which attempts to partition the data into subsets which have common characteristics.

The full suite of assays, at a given point, can be represented by a vector in a 42-
dimensional space. The distribution of observed data points in this high-dimensional space
will be non-uniform. Data can be expected to cluster into various classes, each represent-
ing a common relationship between the abundances of the various elements. Each cluster
determines a corresponding region on the map, namely the set of locations whose assay vec-
tors belong to this cluster. Locations in the same region should be interpretable as sharing
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similar geochemical properties.
Cluster analysis can be approached in a number of ways. The best known method is

the k-means algorithm. For a given integer k, this aims to determine k vectors in assay
space, considered as cluster centers, so that the average distance from each data vector to its
nearest cluster center is minimized. Results depend significantly, however, on the method
used for measuring distance in assay space. We chose Aitchison’s compositional metric [1].
This also takes account of the deficit of the sample not included in the measured assays.
The squared distance between two samples is then the sum of squares of the logarithms
of each component, including the deficit, after subtracting their means. Figure 9 shows
the result for k = 30. As might be expected, there are clear correlations with the surficial
geology shown in Figure 10.

The k-means algorithm assumes that clusters are linearly separable. This can be overly
restrictive. All that is needed is that members of the same cluster should be similar to
each other—possibly through some connected chain of similarities—and that they should
be dissimilar from members of other clusters. This is the idea behind spectral clustering,
which is based on analysis of the spectrum of the graph Laplacian: specifically, of the
weighted graph having assay vectors as nodes, and similarities between them as weights [7].
In this study we used symmetric normalized spectral clustering [6] with similarity derived
from distance in the sense of the Aitchison metric [1]. Results for 30 clusters are shown in
Figure 11.

Figure 11 again shows correlations with the mapped geology of Figure 10. To draw
attention to such correlations, and to aid comparison with the k-means clustering of Fig-
ure 9, we have used the same color palette for clusters as for geological formations. The
choice of specific colors for clusters was made using a simple but efficient algorithm we have
developed for maximizing the overlaps between clusters and mapped formations, over all
possible color permutations.

Choosing the appropriate number of clusters is not easy. We have examined results for
varying numbers between 20 and 50. Broadly speaking, 20 clusters pool regions that are
meaningfully separable by a larger number of clusters, while 50 clusters tend to make too
many noisy distinctions. For the present clustering algorithms, the most useful number
appears to be around 30. Several general criteria have been proposed in the literature
for determining the optimal number of clusters. Typically, however, such criteria lead to
different results, so that the problem of directly choosing the number of clusters is replaced
by the problem of choosing which criterion to use. In our view, the optimal number of
clusters depends on the fineness of the distinctions it is practically useful to make and, in
the present case, that is probably best decided, after inspecting various results, by specific
geochemical and geological expertise, rather than by appealing to a general rule.

Now that 42 elements have been levelled by this study, and extended where necessary to
offer common coverage, alternative clustering techniques might be applied, and the issues
discussed in the previous paragraph explored further. However, we shall not pursue that
here. While there is usually likely to be some uncertainty in interpreting the meaning
of clusters in data, in view of the unsupervised nature of the algorithms, clusters in the

16 of 26



Figure 9: K-means clustering of 42 element geochemistry using 30 clusters.
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Figure 10: Mapped surficial geology with contacts and topography removed.
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Figure 11: Spectral clustering of 42 element geochemistry using 30 clusters.
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present case seem, broadly speaking, to follow the geological formations, at least at this level
of detail. To that extent, much of the interest in clustering will concern the information
provided about bedrock geology in areas covered by glacial drift. Fortunately, however,
there are ways of exploring that issue directly, using supervised methods, to which we now
turn.

6 Inferred geology

As we have seen, the two different cluster analysis techniques described in the previous
section produced quite similar results, which resemble the mapped surficial geology. This
is not at all surprising, as it is the underlying formations which gives rise to such primary
patterns in the geochemistry. These results quickly lead us to the idea that we might be able
to use a neural network approach to build a model of the geochemistry in the outcropping
areas where the geology is known, and then to apply this model to infer the bedrock geology
in the non-outcropping or till-covered areas.

Examination of the mapped geology shown in Figure 10 shows that roughly half of the
region is covered by glacial till. On the other hand, we have geochemistry for 42 elements
over much of this area, the exact extent being shown in Figure 9, for example. The network
is therefore trained in the region where both geology and geochemistry are known, and then
exploited in the covered region where only geochemistry is known. Functionally, it takes
42 element assays as inputs, and generates a corresponding probability distribution over
geological formations as output. The reason for modelling probability distributions over
formations is that some assay vectors may not be uniquely characteristic of a particular
formation. Assay vectors corresponding to different formations will form clusters; but these
may overlap to some extent, with the result that vectors in an overlap region cannot be
assigned categorically to a unique formation. It should be emphasized, however, that the
neural network approach does not assume that clusters have any particular shape. The
region of assay space corresponding to a given formation may be dispersed and of high
complexity.

There are 72 distinct formations mapped within the region for which geochemistry is
available. Some of these, however, have very low abundance. It would be impractical
to expect the network to predict a formation, on the basis of its geochemical signature,
when the number of its instances is very small. We have therefore restricted attention to
the 48 most abundant formations. These jointly account for over 98% of the area where
geochemistry is available.

The results of the process are shown in Figure 12 which, at each location, displays the
most probable formation. The bedrock geology can only be inferred, by means of the neural
network, in regions where geochemistry is known, which explains the restricted extent of
Figure 12 compared to the full extent of the mapped geology in Figure 10.

It is important to point out that Figure 12 was generated wholly by the neural network
using geochemistry alone as input. A comparison of Figures 10 and 12 shows that mapped
geology and neural network inferred geology are almost identical in areas of outcrop. Indeed,
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Figure 12: Inferred bedrock geology of the QUEST Project area.
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where they differ, especially in poorly exposed areas, there may be grounds for preferring
the neural network inferences. In any case, this near identity shows that the geochemical
signature largely characterises the geological formation in exposed areas. This result pro-
vides corroboration for the neural network inferences in the covered areas. Comparatively
speaking, however, in the course of inferring geology from the visible geochemical signature,
greater difficulty is to be expected when the latent cause is at depth.

This observation is expressed quantitatively in our study by the probability grid shown
in Figure 13, which shows the probability of the most probable formation, in other words
the formation indicated as the inferred geology in Figure 12. Such probabilities are seen to
be close to the maximum at or near to areas of outcrop and, generally speaking, to reduce
to a minimum as depth to bedrock increases. Nonetheless, bearing in mind that this is the
probability of the most probable of 48 formations, and since 1/48 = 0.021, anything above
deep blue is 10 times more probable than assigning a formation at random; and nothing is
less than 5 times more probable, since nothing is purple. For much of the covered area, the
odds are up to 100 times better than chance.

Our final image is shown in Figure 14, in which the inferred bedrock geology has been
superimposed on the mapped surficial geology. It can be seen that the inferred geology
blends in satisfactorily well with the mapped geology along the west, north, and northeast
margins of this image where there is no geochemistry.

7 Conclusion

The 42 levelled grids and images of the individual elements that came out of this study are
useful in their own right for further interpretation and follow-up exploration. The copper-
gold deposits at Mount Milligan and Mount Polley and the molybdenum deposit at Endako,
for example, show up quite clearly on the Cu and Mo images, respectively. It would be a
normal starting point to follow up lookalikes in these or any of the other single-element
images.

The two cluster analysis images are interesting in that they provide a straightforward
means of condensing the information contained in multi-element data. They show there are
clear correlations between the 42 elements and the underlying geology and were instrumental
in leading to the idea of using neural networks to infer geology.

However, the most useful product that has come out of this study is the inferred bedrock
geology map. With so many layers of information to draw on (i.e. 42 elements of geochem-
istry), the resulting map is very robust and dependable. This is shown in the coherent
nature of the map, the confirmation from the known outcrop areas, and the way in which
inferred formations tie together in the covered areas. Formations coming up from the south
naturally taper off as they meet formations coming down from the north. This is not a crude
buckshot scatter pattern, which would tend to make one suspicious, but instead appears to
be a sensible and geologically meaningful result.

Perhaps of greatest interest are the small number of inferred intrusions occurring in the
covered areas just north of Prince George. There is little sign of these in surface outcrop.
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Figure 13: Probability of the inferred bedrock geology.
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Figure 14: Inferred bedrock geology superimposed on mapped surficial geology.
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Yet the 42-element geochemistry is clearly picking up the signatures of these intrusions
through the glacial overburden as discrete, sharply bounded geological units.

The next logical step would be to integrate these geochemical results with the newly
acquired geophysical data collected as part of the QUEST Project. The gravity, magnetic
and electromagnetic data offer a completely independent view of the bedrock geology. In
places they should support and corroborate the geochemical results. In other places, of
course, one would expect the geophysics to pick out different patterns, based on density,
susceptibility and conductivity variations that are not reflected in the geochemistry. But
the results, nonetheless, should be extremely interesting and will hopefully lead to a new
discovery.
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