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Introduction

Copper-porphyry deposits are large-tonnage, low-grade,

intrusive mineral deposits that range from less than 10 Mt to

10 Gt grading 0.5 to 1.5% Cu (Sillitoe, 2010). Copper-

porphyry systems host over three-quarters of the global

copper resources and are thus a vital source for meeting the

world’s current and future copper demand (Sillitoe, 2010).

As the world transitions to a decarbonized economy, cop-

per is increasingly required to support global electrification

upgrades to industrial systems as well as transportation and

low-carbon energy infrastructure. The increasing global

population and infrastructure-electrification upgrades will

cause the global demand for copper to rise by a predicted

275% to 350% by 2050 (Elshkaki et al., 2016; Ciacci et al.,

2020). New mineral-deposit discoveries are critical to

meeting this demand; however, the remaining undiscov-

ered deposits are in regions that are mostly or entirely hid-

den under hundreds of metres of postmineral cover material

(Gonzalez-Alvarez et al., 2020). Exploring through post-

mineral cover adds significant complications and chal-

lenges to the discovery of new mineral deposits (Eppinger

et al., 2013). Effective, timely and economically feasible

exploration technologies must be developed to meet the

rise in copper demand and address the challenges associ-

ated with exploring under increasing depths of postmineral

cover (Gonzalez-Alvarez et al., 2020).

This research will contribute to the development of cost-

effective, efficient and quantitative exploration techniques

for porphyry-copper exploration under sedimentary cover

material in British Columbia (BC) and will be applicable to

any exploration program utilizing detrital indicator-

mineral (DIM) methods. The research objectives of the

project are to improve, quantify and expedite the identifica-

tion of copper ore and gangue minerals, focusing primarily

on Cu-porphyry DIMs, using methods that will be devel-

oped on samples from Cu-porphyry exploration programs

and producing Cu-porphyry mines in BC. The research ob-

jectives will be achieved by developing a quantitative ap-

proach to indicator-mineral identification that overcomes

the limitations of conventional DIM methods that include

the handpicking of mineral grains and prohibitive costs as-

sociated with scanning electron microscope (SEM) analy-

sis. The aim of the research is to develop Cu-porphyry

DIM-identification methods using benchtop micro-X-ray–

fluorescence (ìXRF) core scanners. The ìXRF DIM-

identification methods will be evaluated against SEM

analysis of samples from producing BC Cu-porphyry

mines and Cu-porphyry exploration programs.

Background Information

Indicator Minerals

Indicator minerals are minerals that contain textural or

chemical information indicating the presence of specific

mineralization in the bedrock from which the minerals

originally came (McClenaghan et al., 2000). In Cu-

porphyry exploration, indicator minerals have been widely

used as geochemical and detrital vectoring tools (Eppinger

et al., 2013; Cooke et al., 2020). Detrital indicator minerals

are derived from sediments such as glacial till, stream and

lake sediments, or soil samples. Detrital indicator minerals

have been used to explore for various mineral resources in-
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cluding diamonds, gold, precious gems, base-metal sul-

phides and Cu–Ni–platinum-group element sulphides

(McClenaghan, 2005; Gent et al., 2011). The use of DIMs

has led to the discovery of numerous Canadian deposits and

DIM methods can also be used to explore for Cu-

porphyries in BC (Plouffe et al., 2016).

Detrital Indicator-Mineral Methods

Methods that rely on DIMs generally involve sampling,

phase segregation and handpicking under an optical

microscope by a human expert and/or SEM analysis

(McClenaghan and Layton-Matthews, 2017). Optical grain

counting and handpicking DIMs is labour intensive, inher-

ently human biased and subjective, and results in both

costly and slow analysis compared to automated mineral-

ogical methods (Gent et al., 2011; Sylvester, 2012). Auto-

mated mineralogy using SEM analysis has been widely ap-

plied to DIMs; the method offers improvements in

repeatability, quantification and automation (Lougheed et

al., 2020). The challenges to applying widespread auto-

mated SEM analysis to a DIM exploration program are the

high costs associated with the method and the relatively

long amount of time required for sample preparation,

analysis and data interpretation.

Benchtop ìXRF Core Scanners

Analysis of DIMs by high-resolution ìXRF core scanners

offers a promising alternative to SEM-based methods, or

may be complementary to these methods, when applied to

DIMs. High-resolution (in the order of tens of microns)

ìXRF core scanners have been widely used by the paleo-

climate scientific community to investigate paleosediment

cores for the past two decades (Jansen et al., 1998). The

ìXRF analytical approaches used in paleoclimate research

are increasingly being applied to the geosciences and min-

eral and petroleum industries (Croudace et al., 2019). Geo-

logical applications include sedimentary-core trace-metal

analysis (Hennekam et al., 2019), characterization of vol-

canic debris (Peti et al., 2019) and mineral mapping in

Carlin-type gold systems (Barker et al., 2021). The petro-

leum and mining industries have used benchtop ìXRF

analysis for tailings characterization (Fawcett and Jamie-

son, 2011; Galloway et al., 2018), tying of geochemical sig-

natures to mechanical properties of rocks (Hussain et al.,

2018) and geochemical characterization of stratigraphy in

unconventional reservoirs (Hussain et al., 2022). Use of

ìXRF core scanners presents an opportunity to rapidly

characterize DIMs to aid in the search for Cu-porphyry

deposits.

Automated Mineral Identification

Artificial intelligence and machine-learning (ML) applica-

tions have undergone widespread innovation in mining and

the geological sciences in the past ten years (Jooshaki et al.,

2021). Machine learning is an area of study with a set of

methods that extracts meaningful patterns and associations

from known information that can be generalized and ap-

plied to new data to make predictions under uncertainty

(Jordan and Mitchell, 2015). The ML methods investigated

in this study can broadly be grouped into two categories:

supervised and unsupervised methods. Supervised ML

methods are a broad family of algorithms that are first

trained on labelled data and then applied to predict labels on

test or new data, whereas unsupervised ML methods are ap-

plied to unlabelled data. Structural and relational properties

within the data are extracted by unsupervised methods and

these relationships are used to cluster or reduce the dimen-

sionality of the dataset (Jordan and Mitchell, 2015).

Automated mineral identification has been widely imple-

mented in mining and the geosciences since the early 2000s

using automated scanning electron microscopy (Gottlieb et

al., 2000). Automated mineral-identification methods can

also be grouped into two theoretical approaches: super-

vised classification methods using mineral standard-spec-

tral libraries and unsupervised clustering methods (Schulz

et al., 2020; Jooshaki et al., 2021). Automated SEM analy-

sis predominantly identifies minerals by comparing the en-

ergy dispersive spectroscopy (EDS) spectra of a phase to

known EDS spectra in a mineral standard-spectral library

to determine the best match. Alternatively, phases can be

identified without a mineral standard-spectral library by re-

sorting instead to unsupervised clustering of similar EDS

spectra into distinct separate groupings representing

phases present in the sample. Unsupervised clustering al-

lows for phases to be identified without building an exten-

sive database; however, the method still requires user input

to relate clusters of similar spectra to the mineral(s) that

generated them. Furthermore, there is widespread potential

to apply modern supervised and unsupervised methods to

EDS spectra and other electron-microbeam analyses used

to identify minerals, including ìXRF (Jooshaki et al.,

2021). For example, supervised neural networks have been

applied to generate mineral maps by classifying integrated

ìXRF and micro-X-ray–diffraction (ìXRD) data of fine-

grained shale units to model mineral reactivity (Kim et al.,

2022).

Methodology

Geochemical ìXRF Analysis

An M4 Tornado Plus benchtop ìXRF core scanner, manu-

factured by Bruker and equipped with a rhodium tube and

two 260 mm2 silicon drift EDS detectors with ultra-thin

windows, was used for the analysis. Standard analytical pa-

rameters of 19 µm X-ray beam width, 100 ìm pixel resolu-

tion, 10 ms/pixel dwell time, double detector channels,

50 kV acceleration voltage and chamber pressure of 1 mbar
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were used. The M4 Tornado Plus has a mapping area of 190

by 160 mm.

Benchtop ìXRF core scanners nondestructively analyze

whole-rock samples producing two-dimensional arrays of

XRF spectra (Flude et al., 2017). A two-dimensional array

of XRF spectra per pixel was produced representing the

geochemical variation across the sample. Chemical maps,

also commonly referred to as ‘elemental maps’, were pro-

duced by matching elemental peaks to the XRF spectral

peaks identified in the scanned XRF spectra from the bulk

composition of the sample. Areas of interest were selected

for later quantification using the M4 Tornado Plus software

package.

Elemental quantification was completed in the Bruker

ESPRIT 2.4 software. The ESPRIT software is more effi-

cient in quantifying elemental concentrations to acquire

large chemical maps than the M4 software due to its multi-

core processing capabilities. Normalized, quantitative ele-

mental abundances were derived for each pixel from the

XRF spectra using the ‘oxides’quantification method from

the Bruker Quantitative Mapping (QMap) tool, which re-

lies on fundamental-parameters standardless quantifica-

tion to determine elemental concentrations from the XRF

spectra (Kanngie�er, 2003). Fundamental-parameters

standardless-XRF quantification has been determined to be

the best quantification method for heterogeneous rock sam-

ples due to the high geochemical variation found within

geological material (Flude et al., 2017; Barker et al., 2021).

Future work will validate the use of this method applied to

Cu-porphyry DIMs. Both quantified and normalized

elemental-concentration data were collected.

Exploratory Data Analysis

Exploratory data analysis of the quantified chemical maps

was completed in Python, a high-level programming lan-

guage. A dimension-reduction algorithm was used to trans-

form the quantified compositional data from multidimen-

sional elemental space to two-dimensional space. An unsu-

pervised ML clustering method was applied to the trans-

formed two-dimensional data to identify distinct clusters.

The mineral names or mineral groups represented by simi-

lar compositional clusters were determined by the bulk

chemistry of the cluster. Quantified elemental and mineral

maps were produced using a data-visualization package.

Samples

A 5 by 16 cm piece of granitic Cu-porphyry core was scan-

ned with a Bruker M4 Tornado Plus core scanner at the

Electron Microbeam and X-Ray Diffraction Facility (Van-

couver, BC), associated with the Mineral Deposit Research

Unit of The University of British Colombia (Figure 1). The

sample was mineralized with chalcopyrite and pyrite rec-

ognized in hand sample. Gangue minerals present in the

sample were quartz, feldspar, amphibole and mica. A

mosaicked RGB image of the sample was captured at 100x

magnification (Figure 1); the area of the sample shown in

the inset on Figure 1 was selected for chemical quantifica-

tion and normalization.

Preliminary Results

Chemical Maps

Using a visualization package in Python, chemical maps

were produced from exported quantified and normalized

elemental concentrations determined using the Bruker

ESPRIT QMap tool. Preliminary quantified chemical maps

of Si, Al, K, Ca, Mg and P are shown in Figure 2, while S,

Cu and Fe are presented in Figure 3. The ìXRF chemical

maps of geological material represent the relative geo-

chemical variations within a sample, which are controlled

by the distribution and composition of minerals in the sam-

ple (Barker et al., 2021). For example, the Si and Al

chemical maps clearly show quartz veins surrounded by an
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Figure 1. Mosaic of the Cu-porphyry core captured by the camera in the chamber of the Bruker M4 Tornado Plus core scanner (inset shows
area that was selected for quantification).
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Figure 2. Micro-X-ray–fluorescence images showing quantified concentrations of Si (a), Al (b), K (c), Ca (d), Mg (e) and P (f) in a
mineralized Cu-porphyry core sample (g) shown in an image captured at 100x magnification by the camera of a Bruker M4
Tornado Plus core scanner. The ìXRF chemical maps represent the geochemical variations within a sample, which are controlled
by the distribution and composition of minerals in the sample. The Si and Al chemical maps clearly show quartz veins surrounded
by an aluminosilicate matrix (Figure 2a, b). The Ca chemical map illustrates several groupings of Ca-bearing minerals in the alu-
minosilicate matrix (Figure 2d). The highest Ca values overlap with the highest P values (Figure 2f) indicating the presence of
apatite {Ca5(PO4)3(F,Cl,OH)}; moderate Ca, Mg and Fe values and elongate crystal shapes indicate hornblende
{Ca2(Mg,Fe,Al)5(Al,Si)8O22(OH)2} is present; moderate to low Ca values with Al indicate the presence of plagioclase feldspar
{(Na,Ca)Al2Si2O8}; and very low to no Ca indicates that quartz is present. Additionally, the K elemental map shows the effects of
potassic-hydrothermal alteration, associated with the ore zone, where high K values indicate potassic alteration in the aluminosili-
cate gangue (Figure 2c). Chemical maps were produced using a visualization package in the programming language Python from
exported quantified and normalized elemental concentrations determined using the Bruker ESPRIT QMap tool.



aluminosilicate matrix (Figure 2a, b). Similarly, copper-ore

minerals and sulphide gangue can be readily identified by

S, Cu and Fe values on the chemical maps (Figure 3). The

high Cu values indicate the presence of chalcopyrite, and

high Fe and S values indicate that of pyrite. In addition to

identifying mineralization and vein composition, the

chemical maps can be used to visualize the elemental

variance across a sample to determine mineralogy and

hydrothermal alteration in the quartz-aluminosilicate

matrix. For example, the quantified Ca chemical map

illustrates several groupings of Ca-bearing minerals (Fig-

ure 2d). The highest Ca values overlap with the highest

P values (Figure 2f) indicating the presence of apatite

{Ca5(PO4)3(F,Cl,OH)}; moderate Ca, Mg and Fe values

and elongate crystal shapes indicate that hornblende

{Ca2(Mg,Fe,Al)5(Al,Si)8O22(OH)2} is present; moderate to

low Ca values with Al indicate the presence of plagioclase

feldspar {(Na,Ca)Al2Si2O8}; and very low to no Ca indi-

cates that quartz is present. In addition to mineralogy, the

chemical effects of hydrothermal alteration can be seen on

the chemical maps (Figure 2c). High K values in the alumi-

nosilicate matrix illustrate widespread potassic alteration,

where K has replaced Ca and Na in the gangue minerals

(Figure 2c).

Mineral Maps

The unsupervised clustering algorithm identified six clus-

ters that generally correspond to chalcopyrite, pyrite, horn-

blende, apatite, quartz and aluminosilicate-quartz matrix

(Figure 4). Apatite, chalcopyrite and pyrite were composi-

tionally distinct and easily separated using the clustering al-

gorithm. The clustering algorithm was not as effective

when used to separate compositionally similar aluminosili-

cate mineral groups, such as feldspar and clay.

Discussion

ìXRF Chemical Mapping

The benchtop ìXRF core scanner and ESPRIT QMap tool

used to quantify elemental maps displayed in Python were

highly effective in producing informative chemical maps

for ore, gangue and indicator minerals. The maps clearly il-

lustrated vein mineralogy and highlighted copper-mineral-

ization distribution across the sample. Quartz veins can be

identified by high Si values, whereas copper-ore minerals

and pyrite gangue can be readily identified by S, Fe and Cu,

and the aluminosilicate matrix can be differentiated by Ca

concentration (Figures 2, 3). High P values highlighted ap-

atite grains, a key porphyry-indicator mineral (Bouzari et

al., 2016). Hydrothermal alteration is another example of
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Figure 3. Micro-X-ray–fluorescence images showing quantified concentrations of S (a), Cu (b) and Fe (c) in a mineralized Cu-porphyry
core sample. Copper-ore minerals and sulphide gangue can be readily identified by S, Fe and Cu values on the chemical maps. The high Cu
values indicate the presence of chalcopyrite and high Fe and S values, that of pyrite.



ìXRF chemical mapping revealing subtle geochemical

textures. The ìXRF chemical maps of the porphyry core

show widespread elevated values of K (Figure 2c) that are

interpreted to indicate pervasive potassic alteration with K

replacement in aluminosilicates.

ìXRF Mineral Identification

In this study, copper mineralization, sulphides, amphibole

and apatite were successfully clustered into distinct group-

ings by the unsupervised clustering method and a user-

assigned mineral name from the bulk chemistry of the clus-

ter was given to the cluster. As this work is preliminary, the

mineral phases identified require future external validation

by scanning electron microscopy and/or X-ray diffraction

(XRD). The clustering method applied functions most ef-

fectively when determining compositionally distinct min-

erals such as chalcopyrite, pyrite, apatite and quartz. These

groupings were easily separated using the clustering algo-

rithm, although this method failed when used to separate

the minerals in the aluminosilicate matrix, such as feldspar,

clay and amphibole. Additional work refining and develop-

ing the clustering method is required to distinguish be-

tween compositionally similar aluminosilicate groups,

such as has been achieved using the linear-programming

approach adopted by Barker et al (2021). The difficulty in

identifying compositionally similar minerals is not unique

to ìXRF chemical mapping. Compositionally similar min-

erals, such as aluminosilicates and oxides, pose a challenge

to electron-microbeam–derived spectral methods of min-

eral identification as these minerals are difficult to

distinguish one from the other due to the fact their similar

spectra reflect similar elemental compositions.

ìXRF Technical Challenges

Several technical challenges were identified in this study.

Mixed XRF spectra were a potential drawback of the

method and posed an additional challenge when it came to

identifying minerals using ìXRF chemical mapping. The

large excitation volume of the electron beam can produce

deep multiphase fluorescence and result in horizontal and

vertical spectral mixing in nonmonolayered samples

(Flude et al., 2017). For example, neighbouring minerals

adjacent to, and lying below, the uppermost mineral in a

sample may interact with the electron beam and result in

mixed spectra. Spectral mixing can result in an apparent

range of compositions for a mineral due to the effect of

neighbouring minerals diluting the signal from the mineral

of interest. Two-phase mixing may be readily quantified,

however, three- to four-phase mixing greatly complicates

deconvolution of the ìXRF spectra when determining

quantified mineralogy (Barker et al., 2021). Mixed pixels

consisting of spectra from two or more minerals compli-

cated the clustering algorithm’s effectiveness in separating

mineral groups by composition. This was due to mineral

chemical compositions appearing to range from the end-

member chemistry of a mineral, derived from unmixed

spectra, to a blend of the chemical compositions of two or

more minerals, derived from mixed spectra. The apparent

range of mineral compositions that blended into one

another reduced the effectiveness of the clustering algo-
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Figure 4. Mineral map of a mineralized Cu-porphyry core sample derived from quantified
micro-X-ray–fluorescence chemical maps using unsupervised dimensionality-reduction
and clustering methods. The unsupervised clustering algorithm identified six distinct
clusters that generally correspond to chalcopyrite, pyrite, apatite, hornblende, quartz and
aluminosilicate-quartz matrix. Apatite, chalcopyrite and pyrite were compositionally dis-
tinct and easily separated using the clustering algorithm; however, fine pyrite grains may
have been underestimated. The clustering algorithm was less effective in separating
compositionally similar aluminosilicate mineral groups, such as feldspar and clay. The
copper mineralization illustrated on the mineral map is predominantly associated with, or
proximal to, quartz veining and the sulphides present are chalcopyrite and pyrite. Apatite,
a key Cu-porphyry–indicator mineral, can be readily identified on the mineral map.



rithm to distinguish between separate, distinct mineral

groups.

ìXRF Geoscience and Exploration
Applications

Micro-X-ray–fluorescence techniques provide a nonde-

structive method that can be used for the analysis of major

and trace elements; furthermore, these techniques present a

wide range of opportunities for applications in the geo-

sciences and mineral exploration (Croudace et al., 2019).

Benchtop ìXRF core scanners allow for relatively rapid

quantitative chemical analysis over a large mapping area, in

comparison with other automated mineralogy methods,

and can provide key geochemical information at the scale

of tens of microns (Flude et al., 2017). For example, ìXRF

chemical maps can be used to identify mineralogical and

compositional variation in veins, provide information on

trace precious metals in ores and deleterious elemental dis-

tributions in tailings (Fawcett and Jamieson, 2011; Ryan et

al., 2018; Barker et al., 2021). Additionally, mineral identi-

fication can be derived from ìXRF spectra and has wide-

spread potential to aid in DIM exploration programs. Min-

eral mapping using ìXRF results in faster and cheaper

analysis requiring less sample-preparation time when com-

pared to automated SEM analyses. However, a conse-

quence of this approach is that the data interpretation be-

comes more complicated due to the effects of mixed spectra

and the difficulty distinguishing between compositionally

similar minerals. Machine-learning methods offer opportu-

nities to address the challenges associated with ìXRF-data

interpretation (Barker et al., 2021; Kim et al., 2022). The

preliminary results show that the unsupervised ML meth-

ods applied in this study identified key copper ore, gangue

and indicator minerals, but were less effective when it came

to separating compositionally similar minerals or mixed

spectra, thus requiring user input to link clusters to mineral

groups. Supervised ML methods can potentially lead to the

successful classification of complicated ìXRF data as the

algorithms can be trained to identify mixed signals and in-

tegrate additional datasets, such as those obtained from

XRD, optical images or microscopy (Barker et al., 2021;

Kim et al., 2022).

Conclusion

The aims of this research are to develop ìXRF mineral-

identification methods designed to improve, quantify and

expedite the identification of Cu-porphyry–related ore,

gangue and indicator minerals. The project will contribute

to the development of industry-applicable, cost-effective

quantitative mineral-identification methods. The prelimi-

nary study investigated mineral-identification methods on

a piece of mineralized Cu-porphyry core using ìXRF

chemical mapping and unsupervised ML methods. The un-

supervised mineral-identification methods identified cop-

per mineralization, sulphides and porphyry-indicator min-

erals, including chalcopyrite and apatite. Compositionally

similar minerals, such as aluminosilicates, were not readily

identified using the clustering method. These preliminary

results show the unsupervised ML methods were success-

ful in identifying copper ore and DIMs. Further work is re-

quired to validate the ìXRF fundamental-parameters stan-

dardless quantification of Cu-porphyry minerals and to

externally validate the minerals identified by SEM and/or

XRD analysis using the clustering algorithm. Future work

will apply ìXRF chemical mapping and unsupervised ML

classification methods to DIMs.
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