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Recent studies confirm that the distribution of injection-induced earthquakes (IIE) can
be related to both natural (e.g., tectonic, geological, and hydrological) settings and
operational details. However, the relative importance of operational factors with
respect to the natural ones has not been fully understood for the western Canada
sedimentary basin. In this study, we train the eXtreme Gradient Boosting (XGBoost)
machine-learning algorithm to comprehensively evaluate six geological and seven
industrial operational factors suspected to be correlated with the distribution of IIE
in the northern Montney play (NMP), British Columbia. We then derive the Shapley
Additive Explanations values to quantitatively interpret the outputs from XGBoost.
Our results reveal that operational and geological factors have comparable contribu-
tions to the IIE distribution. The top four features that contribute most to the seismicity
pattern are horizontal distance to the Cordilleran deformation front, cumulative
injected volume, shut-in pressure and vertical distance to the Debolt formation (with
respect to the hydraulic fracturing [HF] depth). Features with secondary influence are
the thickness of the Montney formation, breakdown pressure, cumulative fault length
per unit area, and vertical distance to the basement (with respect to the HF depth).
Other remaining features (e.g., the average treating pressure and injection rate) appear
the least related. Our results provide critical information to establishing a comprehen-
sive susceptibility model that includes key geological and operational factors affecting
the IIE distribution in the NMP area.

Introduction
The Montney play in northeastern British Columbia (NEBC) is
a major unconventional gas play in the western Canada sedi-
mentary basin (WCSB), which can be further divided into
the northern Montney play (NMP) and southern Montney play
(SMP, Fig. 1). Although the foreland tectonics of the Canadian
Cordillera mainly controls the structural development in NMP,
the main geological structure for SMP is the Dawson Creek gra-
ben complex. In NEBC, the Montney formation is predomi-
nantly formed by siltstone and gray shale and exhibits a
northeastward thinning wedge (Davies et al., 1997). It is the
main target of hydraulic fracturing (HF) stimulations due to
its enriched unconventional oil and gas resources.

As the shale gas and tight oil development increases, the
number of injection-induced earthquakes (IIE) also started
to surge (Atkinson et al., 2016; Mahani et al., 2017; Schultz

et al., 2020), drawing serious public concerns. The largest
HF-related IIE in the WCSB occurred on 17 August 2015,
in NMP, with M 4.6 (Wang, Harrington, et al., 2020). As
the development shifted to the south, several M >3.5 earth-
quakes have occurred in SMP since 2018. For example, an
M 4.2 earthquake occurred on 30 November 2018, near the
Dawson Creek area Peña Castro et al. (2020). To monitor
the increasing rate of seismicity, more than twenty seismic sta-
tions operated by various institutions have been installed.
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Progress has been made recently on searching for the
underlying factors controlling the occurrence pattern of IIE.
In the WCSB, with the deployment of machine-learning algo-
rithms (MLA), Pawley et al. (2018) searched for the potential
controlling factors affecting the IIE distribution from tectonic,
geomechanical, and hydrological proxies within the Duvernay
play of Alberta, with a trained linear regression-MLA (LR-
MLA). They extracted the feature importance from the LR-
MLA and highlighted multiple factors that could strongly
influence the distribution of IIE, such as the proximity to fossil
reef margins and proximity to the basement. Wozniakowska
and Eaton (2020) adopted a similar LR-MLA to investigate
the IIE in NEBC, and they found that the most strongly influ-
ential factors in NEBC could be the injection depth and the
distance to the Cordilleran foreland thrust and fold belt. In
Oklahoma, Hincks et al. (2018) deployed a Bayesian network
to investigate the relative importance of operational and geo-
logic factors controlling the seismogenesis of wastewater-
induced earthquakes, and identified the injection depth above
the crystalline basement to be the most important. Meanwhile,
Ries et al. (2020) concluded that HF wells targeting older
formations at deeper depths are responsible for the higher
seismicity rate in Oklahoma.

However, previous LR-MLA studies mostly focused on geo-
logical factors in theWCSB. Operational parameters, for exam-
ple, treating pressure and cumulative volume of injected fluid
that could also be influential factors to the IIE distribution, are
not considered in their models. Moreover, although the feature
importance from the LR-MLA could be a useful indicator, how
to further quantify the causal relationship between each feature
and the seismicity rate in a more meaningful way is not com-
pletely resolved yet.

Figure 1. Maps showing the distribution of regional seismicity in
northeastern British Columbia, Canada. (a) Injection wells and
seismic stations in the northeastern British Columbia (NEBC). The
red line marks the outline of the play. The red squares represent
wastewater disposal wells. The thin black lines denote hydraulic
fracturing wells. The blue triangles are seismic stations. The
yellow square marks the study area. The inset shows the study
area within North America. (b) Seismicity in the northern
Montney play. The gray circles represent earthquake epicenters
in our enhanced catalog detected and located by the Source-
Scanning Based on Navigated Automatic Phase-Picking method.
Earthquakes with M >1 are plotted. The background color in
each cell represent the number of earthquakes. The color version
of this figure is available only in the electronic edition.
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Because the regional geological settings in SMP and NMP are
dominated by graben and Cordilleran edge, respectively (Mossop
and Shetsen, 1994; Davies et al., 2018), simply combining these
two regions in the analysis of potential controlling factors may
overlook the underlying geological factors. To address the afore-
mentioned questions, in this study, we take a different approach
by focusing solely on NMP. In our model, both the geological
and operational factors are considered to investigate how these
factors contribute to the occurrence patterns of IIE. Specifically,
we first build an enhanced catalog for NMP based on a newly
developed earthquake detection method. Then we divide the
NMP into 0.1° × 0.1° cells and deploy the eXtreme Gradient
Boosting-MLA (XGBoost-MLA) to delineate the controlling fac-
tors based on the IIE distribution in each cell. Finally, we analyze
the Shapley Additive Explanations (SHAP) values to interpret
the results from XGBoost-MLA, and to show both the feature
importance and the relationships between each feature and
the model output. Overall, we find that operational and geologi-
cal factors have comparable contributions to the seismicity pat-
terns. The top four factors are the horizontal distance to the
Cordilleran belt, cumulative injected volume, shut-in pressure,
and vertical distance to the Debolt formation (with respect to
the HF depth).

Method
In this study, XGBoost is deployed to investigate the potential
controlling factors on the IIE distribution. XGBoost is an ensem-
ble tree-based model introduced to speed up and improve the
performance of the traditional boosting techniques (Chen and
Guestrin, 2016). One of the most noticeable advantages of
XGBoost is the effective performance in memory-limited set-
tings on a single machine, achieved through innovative optimi-
zation of system resources and algorithms such as scalable end-
to-end tree boosting system, justified weighted quantile sketch,
sparsity-aware algorithm, and effective cache-aware block struc-
tures (Chen and Guestrin, 2016).

A traditional Decision Tree model is formed with a root
node, internal nodes, and leaf nodes. The Decision Tree algo-
rithm start the calculation from the root node, then it will
branch out through the internal nodes and finally reach the
leave nodes. In contrast, XGBoost uses a sequence of decision
trees, but each tree learns from the preceding one to improve
the overall performance. For a dataset of n samples with m
features, D � f�xi; yi�g�i � 1;…; n; xi ∈ Rm; yi ∈ R�, and a
tree ensemble model of K regression trees, the model output
is predicted as:

EQ-TARGET;temp:intralink-;df1;41;145ŷi �
XK
k�1

f k�xi�; f k ∈ F ; �1�

in which F � �f �x� � ωq�x���q : Rm → T ;ω ∈ RT� is the set of
all possible regression trees, T is the number of leaves on a tree,
f k represents an independent decision tree with structure q that

maps an instance to the corresponding leaf, and ω is the weight
of the leaf. The goal is to find a set of functions by minimizing
the following regularized objective function

EQ-TARGET;temp:intralink-;df2;308;704J�θ� �
Xn
i�1

l�yi; ŷi� �
XK
k�1

Ω�f k�; �2�

in which Ω�f � � γT � 1
2 kωk2 is the regularization term to

control the complexity of the model, γ is the regularization
on the additional leaf, λ is a tuning parameter determining
the quantity of penalty, and l is a training loss function meas-
uring the misfit between the input value, yi, and the prediction
value ŷi. An additive training strategy, a sequential algorithm,
is adopted to obtain the optimum model parameters. Starting
from a constant prediction and building up an additive model
by adding a new function at a time, the objective function at the
tth iteration can be written as:

EQ-TARGET;temp:intralink-;df3;308;521J�t� �
Xn
i�1

l�yi; ŷ�t−1�i � f t�xi�� � Ω�f t�: �3�

By taking the Taylor expansion approximation of the loss
function to the second order and removing the constant term,
the objective function can be extended to

EQ-TARGET;temp:intralink-;df4;308;431J�t� ≃
Xn
i�1

�gif t�xi� �
1
2
hif 2t �xi�� �Ω�f t�: �4�

in which gi � ∂ŷ�t−1� l�yi; ŷ�t−1�i � and hi � ∂2
ŷ�t−1� l�yi; ŷ

�t−1�
i � are

the first and second order partial derivatives of the loss
function, respectively. For a set of indices assigned to the
jth leaf Ij � fijq�xi� � jg, the optimal weight of the leaf
ω�
j , and the corresponding objective reduction J� can be cal-

culated as:

EQ-TARGET;temp:intralink-;df5;308;301ω�
j � −

P
i∈Ij giP

i∈Ij hi� λ
; �5�

and

EQ-TARGET;temp:intralink-;df6;308;236J� � −
1
2

XT
j�1

�P
i∈Ij

gi�2
P
i∈Ij

hi � λ
� γT : �6�

A common approach to learn the optimal tree structure is to
start from a single leaf and iteratively add branches to the tree
(Chen and Guestrin, 2016). After splitting a leaf node into two
leaves, the gain of the score will be:

EQ-TARGET;temp:intralink-;df7;308;119Gain� 1
2

2
64
�P
i∈IL

gi�2
P
i∈IL

hi�λ
�

�P
i∈IR

gi�2
P
i∈IR

hi�λ
−

�P
i∈I
gi�2

P
i∈I
hi�λ

3
75−γ: �7�

Volume XX • Number XX • XXXX XXXX • www.srl-online.org Seismological Research Letters 3



Model Set-up for XGBoost-MLA
Enhanced catalog for NMP
The main goal of this study is to investigate how different fea-
tures could influence the IIE distribution. Thus, an enhanced
catalog is needed to better depict the spatial variance of seis-
micity distribution. In NMP, an increasing number of seismic
stations are deployed to monitor the surged seismicity related
to the development of unconventional resources (Fig. 1),
allowing us to detect more earthquakes with new earthquake
detection and location techniques. Here, we analyze the con-
tinuous waveforms recorded at eight seismic stations of the
Canadian National Seismograph Network, including NBC4,
NBC5, NBC7, NBC8, and MONT1-4 (Incorporated Research
Institutions for Seismology network code PQ and 1E, sampling
rate: 100 Hz).

We deploy the recently developed Source-Scanning Based
on Navigated Automatic Phase-Picking method (Tan et al.,
2019) to search for earthquakes from 2014 to 2021. More than
3000 events are detected and located within our study area
(Fig. 1b), about 5 times more than that reported in Natural
Resources Canada’s routine catalog (∼650 events). The mag-
nitude of completeness of our enhanced catalog is estimated at
M ∼1 (Fig. S1, available in the supplemental material to this
article). In the following analysis, we only include events with
magnitude larger than 1 to avoid any detection bias. The 1D
velocity model specifically developed by Babaie Mahani et al.
(2020) for NMP is adopted to better locate these earthquakes.
It is also worth mentioning that we only investigate IIE spa-
tially correlated with HF stimulations.

Previous studies using MLA to delineate controlling factors
in theWCSB are often based on individual HF pads (e.g., Pawley
et al., 2018; Wozniakowska and Eaton, 2020). In this study,
we take a different approach by dividing the NMP region into
0.1° × 0.1° cells. Our grid approach is justified for two main rea-
sons. First, the cumulative effect of injections at multiple nearby
pads within the same area cannot be accounted for if the analysis
is limited to individual pads. Second, accurate operational
parameters may not be always available for all HF wells. A recent
study by Hicks et al. (2021) also adopted the grid approach to
investigate the controlling factors of induced seismicity in the
Permian basin, Texas.

Model input
We prepare potential geological and operational factors as the
input features to train the XGBoost-MLA model. The results
are then used to evaluate the corresponding impacts on the
seismicity distribution. Notice that it is unnecessary to normal-
ize the feature inputs as decision trees are not affected by the
scaling of data (Chen and Guestrin, 2016).

Geological factors. We consider the distribution of faults as
a primary geological factor. We compile all mapped structural
lineaments to ensure that every known fault is included in our

model (Fig. 2a). The existence of faults could contribute to the
occurrence pattern of IIE by playing two different roles, that is,
high-permeable pathways and seismogenic structures. For
faults acting as high-permeable pathways, they can help trans-
fer the stress via the injected fluid and aseismic slip to a broader
and deeper area within a short period of time (Eyre et al., 2019;
Peña Castro et al., 2020; Wang et al., 2021; Yu, Harrington,
et al., 2021). Similarly, specific geological structures, that is,
the fault-related fossil reef margin and karst feature, as sug-
gested by Schultz et al. (2016) and Galloway et al. (2018), could
contribute to the distribution of IIE in Alberta by accelerating
the fluid flow to the faults. Faults could also host the seismo-
genesis of IIE. In theory, more seismogenic structures would
imply a higher possibility of having induced earthquakes
(Wang, Schmandt, et al., 2020). Therefore, we consider two
fault-related proxies (i.e., horizontal distance to the nearest
fault from the injection, and the total length of fault traces
within one cell) in our analysis of the capacity of inducing
IIE (Fig. S2a and S2b, respectively).

The characteristics of local geological units could also be
important factors. For instance, features of the Montney forma-
tion, its depth and thickness (Fig. 2b), may influence the occur-
rence pattern of IIE by affecting the fluid migration efficiency
(Sanders et al., 2018; Zonneveld and Moslow, 2018; Wang et al.,
2021). A recent study based on high-resolution seismicity distri-
bution and seismic reflection results suggests that the Debolt for-
mation below the Montney may play an important role as it may
be more seismogenic (Riazi and Eaton, 2020). Moreover,
Skoumal et al. (2018) suggested that the proximity of the base-
ment may contribute to the likelihood of induced seismicity.
Therefore, we incorporate the thickness of the Montney shale,
vertical distance to the Debolt formation (with respect to the
HF depth; Fig. 2c), and that to the Precambrian basement (with
respect to the HF depth; Fig. S2c) into our model inputs.

Another factor in our model is the horizontal distance to the
Cordilleran foreland thrust and fold belt (CFTFB; Fig. 2). A
recent LR-MLA study shows that this variable is highly corre-
lated with the occurrence of M >2.5 earthquakes, although the
causal relationship is still unclear (Wozniakowska and Eaton,
2020). Here, we calculate the horizontal distance to the CFTFB
from each HF stage within one cell to investigate whether this
factor could influence the induced seismicity. A complete list of
geological factors (with corresponding values for each cell) is
available in Table S1.

Operational factors. As the vast majority of IIE in NMP are
related to HF stimulations (Dokht et al., 2021), we focus our
analysis to operational parameters submitted by operators in
their completion reports to the provincial regulator. Total
injection volume, as a widely recognized factor, has been sug-
gested to be associated with seismicity rate in the WCSB.
Particularly, Farahbod et al. (2015) found that in the Horn
river basin, NEBC, IIE started to occur as the monthly HF
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Figure 2. Geological and operational parameters for each 0.1° ×
0.1° cell. (a) The total volume of injected fluid within each cell is
represented by the background color. The blue line represents
the eastern edge of the Cordilleran foreland thrust and fold belt.
The black dashed lines represent known faults in our study area.
The gray circles mark earthquake epicenters. Short light-blue
lines represent hydraulic fracturing (HF) wells, the red squares

represent the wastewater disposal (WD) well, and the blue tri-
angles represent seismic stations. (b,c,d) are similar to panel (a),
but show the thickness of the Montney shale, vertical distance to
the Debolt formation (with respect to the HF depth) and average
shut-in pressure, respectively. Cells filled in white have no HF well
inside, and are not used in our analysis. The color version of this
figure is available only in the electronic edition.
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injection volume (summed over the entire basin) exceeding the
level of 2:0 × 104 m3. In the Fox Creek area of Alberta, Schultz
et al. (2018) reported that seismic productivity could be lin-
early related to cumulative injected volume when it is on
the order of 104–105 m3 from each injection pad. Therefore,
we search for active HF wells in our study area and compile
HF injection data to calculate the cumulative volume of fluid
injections within each cell, setting it as the primary operational
factor (Fig. 2a).

During HF stimulations, multiple treating pressures are
reported, including maximum treating pressure, average
treating pressure, shut-in pressure, and breakdown pressure.
Treating pressures could provide some information on the
state of local stress field. For examples, the shut-in pressure
could be a good approximation to the horizontal component
of the minimum principal stress SHmin (Fig. 2d), whereas in
principle, the value of SHmax (the horizontal component of
the maximum principal stress) could be derived from the for-
mation breakdown pressure (Breckels and van Eekelen, 1982).
To investigate if these pressure conditions could influence the
IIE occurrence pattern, we calculate the average treating pres-
sure values for each cell and incorporate them into the model
inputs. A complete list of operational factors and the values in
each cell are available in Table S1. The spatial distribution of
the values of the other five operational factors is shown in
Figure S3.

Model fitting and interpretation
Previous studies searching for controlling factors based on MLA
often adopted the classification models (e.g., nonseismogenic
wells vs. seismogenic wells; Pawley et al., 2018). In our study,
the seismicity rate within each cell varies significantly (Fig. 1),
a regression model is thus more suitable to evaluate the factors.
We deploy a regression-based objective function that minimizes
the squared loss between predicted values and ground-truth val-
ues. We divide the dataset into one training set (80%), and one
test set (20%), and the parameters used for the XGBoost model
are listed in Table S2. The model is scored with the coefficient of
determination R2 of the prediction, defined as �1 − u

v�, in which
u is the sum of residual squares, Σ�ytrue − ypred�2, v is the sum of
data variations squares, Σ�ytrue − ȳtrue�2, and the best possible
score is equal to 1.0.

One drawback of the XGBoost algorithm (similar to Random
Forest and Neural networks; Hopfield, 1982; Tin Kam, 1998;
Chen and Guestrin, 2016) is that the model is usually a
“black-box,” which makes it less interpretable and cannot inform
how the input variables contribute to the final models. To deal
with this limitation, we adopt the SHAP approach to convert the
results from XGBoost into values that can be quantitatively inter-
preted. SHAP is developed to estimate each feature’s contribu-
tion to the model outputs, based on the coalitional game theory
and local explanations (Shapley, 1953; Lundberg and Lee, 2017).
If a model N has n features, the contribution (∅) of the ith

feature to the output O(N) is calculated based on its marginal
contribution using the equation below,

EQ-TARGET;temp:intralink-;df8;320;717∅i �
X
S⊆Nfig

jSj!�n − jSj − 1�!
n!

�v�S∪fig� − v�s��: �8�

On the basis of the following additive feature attribution
method, a parameter g, which is a linear function of binary
feature, can be calculated via,

EQ-TARGET;temp:intralink-;df9;320;625g�z′� � ∅0 �
XM
i�1

∅iz′i; �9�

in which z′ ∈ f0; 1gM . The value of z′ is one when the feature is
observed, otherwise z′ � 0. M represents the number of input
features (Lundberg and Lee, 2017).

Result and discussion
The R2 score of our XGBoost model is ∼0.79, suggesting that
our regression model is an adequate interpretation of how
these geological and operational factors contribute to the
IIE distribution (Draper and Smith, 1998). Figure S4 shows
the predicted and observed numbers of earthquakes for the
cells in the test set.

The respective contribution of each controlling factor
obtained from SHAP is listed in descending order in Figure 3a.
The top four features that contribute most to the seismicity pat-
tern are horizontal distance to the CFTFB, cumulative injected
volume, shut-in pressure, and vertical distance to the Debolt for-
mation. Features with secondary influence are the thickness of
the Montney formation, breakdown pressure, vertical distance
to the basement, and cumulative fault length per unit area.
The remaining features appear the least related, including aver-
age HF stimulation depth, average horizontal distance to the
nearest faults, average treating pressure, maximum treating
pressure, and injection rate.

The feature importance from Figure 3a is essential, but the
correlation between the IIE distribution and individual factors
cannot be quantitatively depicted. To better visualize the rela-
tionships, we summarize the distribution of SHAP values in
Figure 3b to demonstrate how each factor contributes to the
model output. Each sample on the plot corresponds to the
SHAP value of a given factor within a cell. Generally, positive
and negative SHAP values mean that the factor would lead to
more and less IIE in a cell than the average number of IIE of all
cells, respectively, and the larger the absolute SHAP value, the
higher influence.

Figure 4 and Figure S5 show the SHAP values for each con-
trolling factor. According to our results, horizontal distance to
the CFTFB is the most important factor influencing the seis-
micity rate in NMP, that is, a closer distance to the CFTFB
corresponds to a higher positive SHAP value, thus a higher
seismicity rate (Fig. 4a). This observation is consistent with
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previous studies (Wozniakowska and Eaton, 2020). Although
the corresponding physical mechanisms are not clear yet, sev-
eral tectonic facts may help explain such correlation. First, the
tectonic strain rate in the WCSB decreases monotonically with
the horizontal distance from the CFTFB. Kao et al. (2018) and
Dokht et al. (2021) reported that the tectonic strain rate is pos-
itively correlated with the distribution of IIE. Second, thrust
faults are commonly observed along the eastern flank of the
southeastern Canadian Cordillera (Price, 1986). It is well estab-
lished in the literature that, given the same stress state, thrust
faults are more prone to seismic failure than strike-slip faults
(e.g., Wang et al., 1995; Collettini et al., 2019). Therefore, fluid
injections could load the pre-existing thrust fault systems more
efficiently to increase the seismogenic capacity. Moreover,
when the horizontal distance to the CFTFB exceeds ∼10 km,
the likelihood of inducing IIE drops sharply (Fig. 4), which
could suggest a decreasing density of faults away from
the CFTFB.

The total cumulative volume is ranked as the second impor-
tant controlling factor (Fig. 3). As shown in Figure 4b, the SHAP
value is negative when the cumulative volume is less than
∼120; 000 m3, suggesting that fewer earthquakes (with M >1)
are expected if the cumulative volume is less than this threshold.
Once above, the number of earthquakes surges significantly.
However, the relationship between the cumulative volume
and the number of earthquakes cannot be simply interpreted
from the SHAP values. For example, the SHAP values of the
two cells with the largest total volume are much smaller than
cells with less total volume (Fig. 4b). Nevertheless, it is not suf-
ficient, at least based on this study, to dismiss the linear corre-
lation, given that the cumulative volume is not the only factor
controlling the seismicity rate. Other factors, such as specific
geological structures (Schultz et al., 2016; Galloway et al.,
2018), may overcome the effects from the cumulative volume,
thus affecting the IIE pattern. For example, cells in the
northeastern part of NMP are recognized with a considerable

amount of injected fluid, whereas the distance to the CFTFB
is significantly larger, which may lead to a decreased seismo-
genic potential and, overall, very few earthquakes were induced.

Findings that differ from previous studies may provide
more insights to the previously overlooked controlling factors.
Wozniakowska and Eaton (2020) suggest that the vertical dis-
tance to the Debolt formation may not be an important factor
in inducing M >2.5 events; however, in our case, it is one of the
top factors affecting the IIE distribution. As shown in Figure 4c,
the occurrence of IIE is actually discouraged at places within
∼200 m from the Debolt formation. The seismicity rate increases
with the vertical distance once it exceeds the ∼200 m threshold.
In contrast, the vertical distance to the basement seems to be a
secondary factor influencing the seismicity pattern (ranked 7th).
This is somewhat surprising as in previous studies, the vertical
distance to the basement is often conjectured to be an indicative
feature that facilitates hydraulic communications with deeper
faults (Pawley et al., 2018; Wozniakowska and Eaton, 2020;
Yu et al., 2020; Wang et al., 2021), rather than the vertical dis-
tance to the Debolt formation. For example, Amini et al. (2021)
suggest that vertical distance to the Precambrian basement is one
of the most important factors for NEBC, correlating negatively
with the increasing likelihood of IIE. However, such negative
correlation is not observed in our study (Fig. S5). One possible

(a) (b)

Figure 3. Shapley Additive Explanations (SHAP) values of various
geological and operational factors. (a) Mean SHAP values of the
eXtreme Gradient Boosting (XGBoost) model, representing the
relative importance to the model output. The features are
ordered based on their importance. (b) Detailed distribution of
SHAP values of all cells. Each dot represents one specific feature
of a cell, and is colored by the feature’s SHAP value. A higher
positive SHAP value means this factor would cause more injec-
tion-induced earthquakes (IIE) in a cell than the average number
of IIE of all cells. The color version of this figure is available only in
the electronic edition.
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(a) (b)

(e) (f )

(c) (d)

Figure 4. Distribution of SHAP values with respect to six different
factors. (a) Horizontal distance to the Cordilleran foreland thrust
and fold belt (CFTFB). Each dot represents one cell and the x axis
shows the corresponding feature value. (b) Total volume of

injected fluid. (c) Vertical distance to the Debolt formation (with
respect to the HF depth). (d) Shut-in pressure. (e) Thickness of the
Montney formation. (f) Breakdown pressure. The color version of
this figure is available only in the electronic edition.
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reason is that their model incorporates data from both SMP and
NMP, despite the significant discrepancies in the geological set-
tings between these two regions. A recent study based on high-
resolution 3D seismic imaging of subsurface structures docu-
ments a positive correlation between the increased seismicity rate
and a buried thrust fault system within the Debolt formation
(Riazi and Eaton, 2020). This new finding suggests that the
Debolt formation may be comparable to the basement in causing
IIE, and provides some explanation to our results.

Moreover, our results show that the shut-in pressure and
the breakdown pressure are also important factors. As shown
in Figure 4, the seismicity rate starts to surge when the shut-in
pressure increases from ∼45 to ∼55 MPa. Similarly, the SHAP
value is below 0 when the breakdown pressure is smaller than
∼47 MPa. Thus, the contributions from treating pressures,
although their effects have not been systematically investi-
gated in the past, should not be overlooked. To explain the
seismic responsiveness from treating pressures, one possible
scenario is that they could be related to the specific geome-
chanical condition within the local geological setting. In other
words, the range of treating pressures simply reflects the
stress required to complete the HF stimulations to a given
formation at a given depth. As shown in Figures 2 and 4, cells
with higher seismicity rates are generally distributed along the
CFTFB. Most of these cells have similar vertical distances to
the Debolt formation, similar thickness of the Montney for-
mation, and a comparable background stress regime of SHmax

and SHmin. Therefore, the observed correlation between a
higher seismicity rate and the specific range of treating pres-
sures could imply that certain geological settings are particu-
larly in favor of IIE. It is worth mentioning that only the shut-
in pressure is reported by the operators, which could be a
proxy to instantaneous shut-in pressure. However, because
their relationship cannot be verified, we will not make further
inference here.

The spatial distribution and structural geometry of faults are
closely linked to the occurrence of IIE (Bao and Eaton, 2016;
Galloway et al., 2018; Yu et al., 2019; Schultz et al., 2020; Yu,
Kao, et al., 2021; Gao et al., 2022). Therefore, it is not surprising
to find out that both the cumulative length of faults and the
average distance to the nearest faults from HF stimulations
appear to be significant contributors. However, in our model,
their contributions (mean SHAP values of ∼0.6 and ∼0.4 for
the former and the latter, respectively) are much less compared
to the top two factors (horizontal distance to the CFTFB and
total volume of injected fluid with the corresponding mean
SHAP values of∼5.7 and ∼2.1). One possible explanation is that
the fault distribution adopted in our model is incomplete
because of many hidden or blind faults missing from the pub-
licly available dataset (Riazi and Eaton, 2020). As a result, it is
possible that the contribution from fault-related factors may be
somewhat underestimated in our study. More detailed mapping
of regional fault systems in NMP would help better define the

relationship between fault-related parameters and the occur-
rence pattern of IIE.

Despite our best effort, we acknowledge that the 13 factors
considered in our model cannot be a complete set controlling
the occurrence pattern of IIE. Other possible factors include
the stress state of faults (Wang et al., 2018), overpressure
of shale formations (Schultz and Eaton, 2018), and the pres-
ence of specific geological units facilitating fluid migration
(Galloway et al., 2018). At the time of this study, however, we
are unable to collect sufficient amount of data to incorporate
these factors into our analysis. We expect to expand our col-
lection of features in the future as the quality and quantity of
datasets improve.

Generally speaking, collinearity between factors could influ-
ence the robustness of models, especially for LR-MLA. However,
one key feature of Decision Tree algorithms (including XGBoost)
is that they are naturally immune to multicollinearity (Kotsiantis,
2013). To verify the degree of collinearity of our model’s input
features, we calculate their correlation matrix and the result is
shown in Figure S7. As expected, we obtain a high value of
cross-correlation coefficient (>0.8) between the maximum treat-
ing pressure and average treating pressure. A strong negative cor-
relation (−0.79) is also found between the horizontal distance to
the CFTFB and the thickness of theMontney formation, which is
reasonable as the Montney shale becomes thinner towards the
east, away from the CFTFB (Fig. 2; Fig. S7). No other pairs
appear to be highly correlated.

We do not attempt to remove aftershocks from our earth-
quake catalog prior to the statistical analysis, a process known
as declustering (Gardner and Knopoff, 1974), for two practical
reasons. First, most earthquakes in NMP are small. During the
∼7 yr of our study period, only five M >3 events occurred. The
lack of big mainshocks implies insignificant/negligible after-
shocks (Fig. S8 shows the history of seismicity for cells with
M >3 events). Second, aftershocks can also be regarded as
IIE in our statistical analysis because they can be caused by
the combined stress perturbation from fluid injections and
nearby earthquakes. Therefore, removing aftershocks from
the catalog may actually introduce statistical bias to our analysis.

Finally, our results provide critical information to establish-
ing a comprehensive susceptibility model that includes key
geological and operational factors affecting the IIE distribution
in the NMP area. This inclusive approach will give regulatory
agencies and the energy industry a more effective tool to mit-
igate the seismic hazard due to IIE.

Conclusion
Distribution of IIE can be related to both natural and opera-
tional factors. However, the relative importance of operational
factors with respect to the natural ones has not been system-
atically investigated for the western Canadian sedimentary
basin. In this study, we applied a supervised machine-learning
algorithm, namely, XGBoost, to systematically evaluate the
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contributions of various geological and operational factors on
the distribution of IIE in the northern Montney play of
northeastern British Columbia, Canada.

We began with the establishment of a much-enhanced
earthquake catalog, to better depict the spatiotemporal distri-
bution of the regional seismicity in the study area. Then with
XGBoost, we set six geological and seven operational factors as
input parameters and trained a regression model to investigate
their contributions to the observed seismicity distribution.
Next, we adopted the SHAP approach to convert the results
from XGBoost into values that can be quantitatively inter-
preted. Overall, the performance of our XGBoost model is very
good with an R2 score of ∼0.79.

Our study reveals that horizontal distance to the Cordilleran
deformation front, total injected volume, shut-pressure and ver-
tical distance to the Debolt formation (with respect to the HF
depth) are the most significant factors contributing to the IIE
distribution. Treating pressures (e.g., shut-in pressure and
breakdown pressure) could also contribute to the IIE distribu-
tion. Vertical distance to the Precambrian basement (with
respect to the HF depth) seems to be a secondary influencing
factor, differing from previously studies. One possible explana-
tion is that previous studies simply combined NMP and SMP
into the model simultaneously, which may overlook the under-
lying geological factors. The IIE distribution is less sensitive to
fault-related parameters (distance to the nearest faults and the
cumulative length of fault traces per unit area). This somewhat
surprising result can be an artifact due to the limited knowledge
of hidden or blind faults in our study area. Overall, our results
provide critical information to establishing a comprehensive
susceptibility model that includes both geological and opera-
tional factors affecting the IIE distribution in the NMP area.
Our models can guide regulatory agencies and the energy indus-
try to effectively mitigate the seismic hazard due to IIE.

Data and Resources
The seismic data can be downloaded from the Incorporated Research
Institutions for Seismology Data Management Center (IRIS DMC;
https://ds.iris.edu/ds/nodes/dmc/) for seismic stations of the
Canadian National Seismograph Network, including NBC4, NBC5,
NBC7, NBC8, andMONT1-4 (IRIS network code PQ and 1E, sampling
rate: 100 Hz). Earthquake catalog is available as part of the Geological
Survey of Canada Open File reports at Natural Resources Canada’s
(NRCan’s) GEOSCAN database (https://geoscan.nrcan.gc.ca) and
available at https://doi.org/10.5281/zenodo.6378188. The operational
parameters can be accessed at https://www.bcogc.ca/data-reports/
data-centre/. The surface fault traces are published by Hayes et al.
(2021). Other geological information could be found at https://
ags.aer.ca/. XGBoost package can be downloaded at https://xgboost.
readthedocs.io/en/stable/. SHAP is available at https://shap.
readthedocs.io/en/latest/index.html. The supplemental material to this
article includes eight supplemental figures (catalog completeness, map
view of three geological factors, map view of five operational factors,
comparison between predicted and observed number of injection-

induced earthquakes (IIE) for the test dataset, distribution of
Shapley Additive Explanations (SHAP) values of various controlling
factors, results of feature importance with different bin sizes, cross-
correlation values between these factors, temporal distribution of
earthquakes for the five cells with M >3 events, and two tables (the
input values of geological and operational factors of each cell to the
eXtreme Gradient Boosting [XGBoost] model, parameters of
XGBoost model). All websites were last accessed in January 2022.
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