
1.  Introduction
Repeating earthquakes (repeaters) are events that recurrently rupture the same fault patch with the same 
focal mechanisms, often characterized by nearly identical waveforms (Abercrombie et  al.,  2020; Gao & 
Kao, 2020; Hatch et al., 2020; Sheng et al., 2021; Uchida & Bürgmann, 2019). These events are of great im-
portance in many aspects of geophysics, such as monitoring subtle temporal changes of crustal properties 
(e.g., Pacheco et al., 2017; Poupinet et al., 1984; Sawazaki et al., 2015; Schaff & Beroza, 2004) and oceanic 
temperature (Wu et al., 2020), estimating fault creep (e.g., Materna et al., 2018; Matsubara et al., 2005; Na-
deau & Johnson, 1998; Uchida et al., 2003, 2006; Yu, 2013), investigating inner core rotation (e.g., A. Li & 
Richards, 2003; Tkalčić et al., 2013; Zhang et al., 2005, 2008), evaluating the precision of earthquake loca-
tions (e.g., Jiang et al., 2014; A. Li & Richards, 2003; Meier et al., 2004; Schaff & Richards, 2011), and pro-
viding insights into the nucleation process of earthquakes (Huang & Meng, 2018; Kato & Nakagawa, 2014; 
Kato et al., 2012; Meng et al., 2015) and landslides (Yamada et al., 2016).

There are three ways of identifying repeaters. The most straightforward approach is by considering the over-
lap of the source areas (e.g., Waldhauser & Ellsworth, 2002). However, this physics-based approach requires 
a dense near-source array to precisely estimate the interevent distance and source dimension. The second, 
and perhaps the most popular way, relies on waveform similarity between an event pair (∼64% in Table S1). 
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repeatedly on the same fault patch with the same fault directional motion and similar amount of 
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significantly from one case to another. With both synthetic and real data, we find that waveform similarity 
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The degree of similarity can be expressed by the value of cross-correla-
tion coefficient (CC) in the time domain or equivalently coherence in the 
frequency domain. The employed CC threshold is somewhat arbitrary, 
ranging from as low as 0.70 for regions with sparse network coverage 
to as high as 0.98 for areas with denser instrumentation (Table S1). The 
third way is a hybrid approach with complementary criteria in addition to 
CC (Table S1). The additional criteria differ significantly among various 
studies. Some studies examine the time interval between the event pair, 
the difference between the two event's S–P differential times, and/or the 
magnitude difference to minimize misidentification, while others direct-
ly verify the repeaters by relocating their hypocenters (Table S1).

With the increasing computing power, detecting repeaters through 
waveform similarity has become a routine process in seismology (e.g., 
Chamberlain et  al.,  2018,  2020; Tepp,  2018). However, a growing body 
of literature suggests that similar waveforms may only imply source 
proximity (Cheng et al., 2007; Ellsworth & Bulut, 2018) and/or similar 
focal mechanisms (Kilb & Rubin,  2002), but not necessarily repeating 
ruptures. One of the most striking examples is in central Japan where 
Cheng et al.  (2007) analyze high-quality data from an extremely dense 
seismic array of 56 stations in a small area of ∼20 × 20 km and found no 
true repeaters among 807 very similar events (CC ≥ 0.80). Their results 
highlight the serious reliability issue of using only waveform similarity in 
repeater identification.

The focus of this study, therefore, is to systematically investigate the defi-
ciency of waveform similarity in repeater identification. We first examine 
how the CC varies with interevent separation and uncover the overlooked 
factors through a large number of synthetic experiments. We then illus-
trate that waveform similarity indeed lacks the resolution to determine 
whether two events are true repeaters or not using a dense local borehole 
array data in Parkfield, CA. To more reliably identify repeaters, we recom-
mend the less popular physics-based approach that considers interevent 
overlap (e.g., Waldhauser & Ellsworth, 2002). We compare the effective-
ness of the physics-based and waveform-similarity-based approaches us-
ing events occurred in the Fox Creek area, Alberta, Canada, where earth-
quake source parameters are well constrained by local stations.

2.  Synthetic Experiments
Figure 1a illustrates the configuration of our synthetic experiments. We 
place one event (the template event) at the center of an array. Then, we 
incrementally shift the other event (the matched event) with the same 
focal mechanism in either north-south (Figure 1a) or vertical direction 
(Figure 1b). The technical details of our experiment setup and CC cal-
culation are presented in the Supporting Information (Texts S1 and S2).

2.1.  Constraining Interevent Separation Using Single-Channel 
Data

Single-channel CC has been used in numerous previous studies to in-
fer the existence of repeaters (Table S1), thus we first examine how the 
CC varies with source separation using single-channel (i.e., E, N, or Z) 
data. In Figures 1c and 1d, we present the results of a representative case, 
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Figure 1.  Synthetic experiment setup (a, b) and results showing CC 
variation as a function of horizontal (c, e) and vertical (d, f) interevent 
separation. (a) For horizontal interevent separation, the template event 
(fuchsia star) is fixed in the middle while the matched event (navy blue 
stars) moves away from the template event in both directions. Stations 
(triangles) are placed at three different epicentral distances (R = 5, 50, 
or 150 km). The gray star marks the location of the matched event such 
that one of the stations (Sta3 in this case) is of equal distance to both 
the template and matched events. (b) For vertical interevent separation, 
the template event is placed at two different depths (D = 3 or 10 km) 
with the matched event moving up or down. (c, d) Correspond to a 
representative case with single-channel data, whereas (e) and (f) compile 
all test results with single-station (three-channel) data. Individual test 
results are presented in Figures S3 and S4. For (c) and (e), positive and 
negative horizontal separations indicate that the matched event is shifted 
to the south and north, respectively; for (d) and (f), positive and negative 
vertical separations indicate that the matched event is shifted down or up, 
respectively. CC, cross-correlation coefficient.
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namely, a strike-slip earthquake (template event) at the depth of 3 km with a station 5 km away from the 
epicenter.

For horizontal interevent separation, our results indicate that single-channel waveforms can have very dif-
ferent sensitivities (Figure 1c). In general, the CC value decreases with increasing hypocentral separation. 
It quickly drops from 1 when the two sources are perfectly colocated to <0.5 when the pair is ∼1 km apart. 
Beyond that, the CC curves appear to fluctuate between 0.2 and 0.4 without a clear monotonic trend. This 
implies that using the CC value to constrain the difference between two nearby hypocenters may not be 
ideal once the separation is on the order of kilometers.

Another important point in Figure 1c is that the CC value may be strongly affected by the combined effect of 
focal mechanism and relative position between the source and station. This effect is best illustrated by Sta-
tion 3 as the interevent distance increases. For all three channels, the CC value decreases when the matched 
event shifts northward from 0 to −1.3 km. Once passing the −1.3 km mark, the CC value has a sudden drop 
on both E and Z channels but continues to increase on the N channel. This unexpected result happens when 
Station 3 is located very close to one of the assumed nodal planes (Figure 1a). As the matched event shifts 
northward, Station 3's position moves across the nodal plane and therefore causes polarity reversal on the 
Z and E channels. When the interevent separation reaches −2.6 km, Station 3 is nearly of equal distance to 
both the template and matched events (Figure 1a), leading to identical waveforms on the N channel but re-
versed shapes on the other two channels (Figure S1). Consequently, the final (maximum) CC values would 
be 1 for the N channel (taken when the two P-phases coincide) and ∼0.5–0.6 for the Z and E channels (taken 
when the two P-phases are offset by half a cycle), even though the two events are 2.6 km apart. We have 
tested other types of focal mechanisms (pure normal or thrust-faulting) and the profound effect remains 
(Figure S2).

Unlike the cases of horizontal separation, the CC curves obtained with different channels and stations 
overall show similar trends when the two sources are vertically apart (Figure 1d), hinting that using the CC 
value to constrain the vertical interevent separation is probably independent of data channel and station 
azimuth. Especially for the vertical channel, stations with different azimuths can have identical sensitivities 
to the interevent separation when the focal mechanism is pure strike slip (Figure 1d, bottom panel). Notice 
that the CC curves derived from the E and N channels of Station 1 are identical to those from the N and E 
channels of Station 3, respectively (Figure 1d), due to the symmetrical station location on the focal sphere 
(Figure 1a). Results of these tests once again suggest that a smaller CC does not necessarily represent a larg-
er separation once the vertical separation exceeds a certain threshold (∼0.5 km). We also find that results 
from different focal mechanisms are comparable (Figure S2). Last but not the least, the CC value generally 
drops much faster with increasing vertical source separation (Figure 1c vs. Figure 1d) as a result of more mi-
nor discrepancies between waveforms. In other words, the CC seems to be much more sensitive to capture 
the vertical source shift than the horizontal.

The simple tests above demonstrate that, in addition to interevent distance, CC can be severely affected by 
the specific channel used, combined effect of focal mechanism and relative position between the source and 
station, and source separation direction (horizontal vs. vertical).

2.2.  Constraining Interevent Separation Using Single-Station (Three-Channel) Data

If data from all three channels are included, we find that the CC sensitivity to source separation increases 
dramatically for the cases of horizontal separation (e.g., Figure 1c vs. Figure S3a) but insignificantly for 
those of vertical separation (e.g., Figure 1d vs. Figure S4a). For a given horizontal separation, Stations 1 
and 3 tend to have the lowest and highest CC values, respectively (Figures 1e and S3). This is because the 
waveform discrepancies are more diagnostic in the direction approximately in line with the template and 
matched events, and vice versa. The results strongly suggest that station azimuth is an important factor that 
cannot be overlooked in single-station cases. In contrast, the influences of focal depth, epicentral distance, 
and source focal mechanisms seem to be limited (Figure S3).

The computed CC overall is very sensitive to vertical interevent separation with the only exception when 
the source is deep and the station is close (e.g., D = 10 km and R = 5 km, Figures 1f and S4). For a close 
station (R = 5 km) and a shallow source (D = 3 km), even a very small (0.2 km) vertical separation can lead 
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to a dramatic drop of CC to <0.8 (Figures S4a and S4c), but the sensitivity 
gets worse when the source is deeper (Figures S4b and S4d). This is main-
ly a velocity structure effect caused by smaller seismic velocity variation 
at deep depths. In other words, the CC sensitivity would become higher 
when the corresponding velocity structure (and therefore the observed 
waveforms) is more complicated. An important observation to point out 
is that the CC is very sensitive to vertical interevent separations when 
the epicentral distance is large (e.g., R = 50 or 150 km), regardless of the 
focal depth (Figures  S4e–S4l). This is opposite to what is expected for 
earthquake depth determination as seismic phase arrival times at distant 
stations usually have less depth constraint. It turns out that waveforms 
at distant stations can have better developed depth phases (i.e., seismic 
phases reflected from either the free surface or Moho). Consequently, a 
subtle change of source depth may lead to a significant waveform dif-
ference and hence an apparent CC drop. Therefore, our experiments in 
this section further demonstrate that CC can be affected by the number 
of channels used, station azimuth, velocity structure, and epicentral 
distance.

2.3.  Constraining Interevent Separation Using Multistation Data

For areas with high station density (e.g., Japan), it is common to use a 
minimum of two stations (usually only the vertical channel) for identi-
fying repeaters (Table S1). The majority of prior work (Table S1) calcu-
late CC separately for each station. This approach essentially uses more 
stations with different azimuths and/or epicentral distances but may not 
necessarily improve the sensitivity if all available stations happen to be 
the ones with lower sensitivities (Figures 1e and 1f). An alternative way is 
to calculate the CC simultaneously across the network (2 out of 58 cases, 
Table S1) which includes the constraint of traveltime moveout. In such 
a case, the computed CC can be extremely sensitive to hypocenter differ-
ence (Gao & Kao, 2020). We refrain from investigating the multistation 
scenario as the CC sensitivity is known to be strongly affected by network 
geometry (Chamberlain & Townend, 2018; Gao & Kao, 2020), and thus 
no general/common rules can be inferred objectively.

In summary, our synthetic experiments reveal that CC is a very complex 
function of many aforementioned factors. A higher CC value does not 
necessarily represent a smaller interevent separation, and vice versa. 
Therefore, in contrast to the conventional wisdom, our synthetic results 
indicate that CC is not a robust indicator of two events being true repeat-
ers or not.

3.  Verification With Real Earthquake Examples
The High-Resolution Seismic Network (HRSN, Figure 2a) is a dense lo-
cal array of borehole sensors deployed in the Parkfield area, CA, and op-
erated by the Berkeley Seismological Laboratory. The HRSN waveform 
data primarily consist of seismic signals >1  Hz (instrument response 
shown in Figure  S5) with an excellent signal-to-noise ratio (SNR) and 
a digitizing rate of 250 samples per second. Hence, this data set is ideal 
for the purpose of our study to verify whether waveform similarity is a 

good proxy of repeater identification. Here, we take three events (P1–3, Figure 2a) from two well studied 
repeating earthquake clusters in Parkfield (e.g., Abercrombie, 2014; Dreger et al., 2007; Zoback et al., 2011). 
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Figure 2.  CC test results with real earthquake data from Parkfield, CA. 
(a) Map showing earthquake epicenters (colored stars; Waldhauser & 
Schaff, 2008) and HRSN seismograph stations (yellow triangles). Black 
lines denote known surface traces of the San Andreas Fault system. The 
green dot marks the town of Parkfield. Insert shows the zoom-in locations 
of events P1–3. (b) Normalized, unfiltered, and demeaned waveforms, 
aligned at the S-phase arrival. The highlighted segment indicates the 
window of dynamic length (see Text S2) used for CC calculation. The gray 
box in the middle panel outlines the waveform segment amplified in (d). 
(c) Effects of filtering on the CC values between the two events determined 
with individual single-station (three-channel) data and dynamic window 
lengths. (d) An example of waveform change due to filtering. Red and 
black arrows mark the P-phase onset of the two events. The slight time 
difference (0.012 s) between the two arrows is overlooked after band-pass 
filtering between 1 and 20 Hz. CC, cross-correlation coefficient; HRSN, 
High-Resolution Seismic Network.
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Among them, events P1 and P3 belong to the same cluster with similar source areas while event P2 occurred 
on a neighboring fault patch.

3.1.  CC Between Nonrepeaters

We first calculate the CC between neighboring events, that is, P1 and P2. We only use data from stations 
nearly free from noise contamination, as hinted by the flat waveforms before the P wave arrival (one ex-
ample is shown in Figure 2b). The most striking result of our analysis is that the CC values derived from 
unfiltered three-channel waveforms indeed differ significantly among different stations, ranging from 0.76 
to just above 0.95 (Figure 2c). Such a wide CC range is consistent with the inference from our synthetic tests 
that the CC can be severely affected by station azimuth and/or source–receiver position/path even under 
the extremely low noise circumstances. The relative deficiency of high-frequency signals in the waveforms 
of station RMNB (Figure 2b) may also contribute to the high CC of 0.95. This observation seems to suggest 
that site effect can affect the final CC result too. Additionally, the CC may be further affected by local struc-
tures of velocity discontinuities as this region is featured by complex fault zones (Figure 2a). Our study 
reveals that the waveforms of nonrepeaters can show apparent difference (top panel in Figure 2b), slight 
difference (middle panel in Figure 2b), or little difference (bottom panel in Figure 2b) at different stations. 
For any given station, the CC values of different channels can be either similar or different (Figure S6). 
Together, waveform similarity indeed lacks the resolution to decide if the two events are repeaters or not.

Because nearly all prior works practically identify repeaters through filtered waveforms for the purpose of 
mitigating the noise impact, we then examine the effects of commonly used band-pass filters (Table S2). 
Our results indicate that the CC obtained from different stations all show a clear increasing trend when the 
passband becomes narrower (Figures 2c and S6), consistent with the findings from synthetic experiments 
of an earlier study (Baisch et al., 2008). Especially for the very narrow but very popular 1–4 Hz band-pass 
filter used by many previous studies (Table S2), 9 out of 10 stations have CC > 0.98 (Figure 2c), which is the 
highest CC threshold used in the literature in selecting repeaters (Table S1). This simple experiment high-
lights the often-overlooked fact that filtering could remove the important frequency content in the signal 
that distinguishes the physical separation of the two events, in addition to reducing the unwanted noise. 
For example, even a very wide band-pass filter (1–20 Hz) would remove the very high-frequency signal with 
poor similarity and thus lead to very similar waveforms as shown in Figure 2d. What makes it worse is that 
filtering would change both the shape and width of the P wave and therefore make the subtle difference in 
the S–P differential traveltime (0.012 s in Figure 2d) unresolvable, effectively throwing away the most crit-
ical information on the interevent distance. Technically, resolving the 0.012 s time difference between the 
two P-phases would require the higher corner frequency of the applied band-pass filter to be at least 30 Hz, 
a scenario never considered by previous studies (Table S2). However, the small bias (0.012 s), equivalent to 
a mislocation of ∼100 m (Hayward & Bostock, 2017), is sufficient to cause misinterpretation for events with 
small source dimension. The results here strongly imply that filtering would lead to misidentification of re-
peaters if the selection criterion is solely based on waveform similarity. We also tested the effect of template 
window length ( winT ) associated with different filters (Table S2) in calculating CC (Text S2) and the results 
are comparable (Figure S7). Two examples of how filtering increases the waveform similarity at close and 
distant stations, respectively, are presented in Figures S8 and S9 for reference.

3.2.  CC Between True Repeaters

Interestingly, we also find that, for true repeaters like events P1 and P3, the CC values obtained from differ-
ent stations still differ significantly from each other (Figure S10). The unfiltered waveforms can be nearly 
identical at one station (Figure S11a) but have minor difference at another station even with extremely 
low noise (zoom-in box in Figure S11b). Without noise contamination, the waveform difference between 
true repeaters may arise from the variability of the rupture process (such as the slight difference in earth-
quake initiation point) (Uchida, 2019) and/or seismic velocity change (e.g., Pacheco et al., 2017; Poupinet 
et al., 1984). With the band-pass filters applied, the waveform discrepancy overall becomes much smaller 
as indicated by the increasing CC values (Figure S10). This is similar to, but less dramatic as, the case of 
nonrepeaters.
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Taken together, nonrepeaters indeed can have very similar waveforms (bottom panel in Figure 2b) while the 
waveforms of true repeaters may display minor difference (Figure S11b). In contrast to the traditional view, 
our observations undoubtedly suggest that waveform similarity is not a good proxy for repeater identifica-
tion, especially with band-pass filters applied.

4.  Comparison Between Waveform-Similarity-Based and Physics-Based 
Approaches
The most fundamental concern of two events being repeaters or not is whether their ruptures significantly 
overlap with each other. However, there is no standard requirement about the minimum overlapping areas 
for repeater identification. Similar to the physical criterion adopted by some earlier studies (e.g., Waldhaus-
er & Ellsworth, 2002; Zhao & Peng, 2008), we define two events to be repeaters if their interevent distance 
is no larger than the source dimension of the bigger event.

The rupture area of an earthquake can be measured directly from the corresponding slip distribution. In 
practice (especially for moderate and small events that can be approximated by point sources), however, the 
rupture area is commonly represented by the equivalent rupture radius (ERR, Table S3) that can be estimat-
ed from the corner frequency (fc) of the P- or S-phase spectrum via the well-established circular dislocation 
model (Brune, 1970; Eshelby, 1957) as

ERR ,
c

kv
f� (1)

where k  is 1.6 / 2  for P waves and 1.99 / 2  for S waves, and v is the corresponding P- or S-phase velocity 
(Sato & Hirasawa, 1973).

Since the rupture radius of a circular fault is related to its scalar seismic moment (Mo) and stress drop (Δσ) 
as


 o

3
7ERR ,

16Δ
M

� (2)

many previous studies took this simplified approach by assuming a reasonable Δσ value (Table S3). Because 
a smaller Δσ value (or equivalently a smaller fc) will yield a larger ERR, underestimation of Δσ or fc is likely 
to misclassify neighboring events as repeaters, and vice versa. Therefore, the uncertainty due to a poorly 
constrained (or wrongly assumed) Δσ or fc value should be treated with caution (Huang et al., 2020; L. Li 
et al., 2011). We note that ERR is the most popular, but not the only parameter. More precisely determined 
rupture distribution and/or geometry should be used to compare with the interevent distance for repeater 
identification whenever possible.

For the distance of interevent separation, however, it is always challenging to get a precise measurement 
unless a very dense local array is available (Cheng et al., 2007). In case of limited data, we propose a variant 
of the double-difference method (Waldhauser & Ellsworth, 2000) that minimizes the residual between ob-
served and predicted relative S–P differential traveltime through three-dimensional grid search to precisely 
estimate the interevent distance. We explain the detail of our method, named the differential-traveltime 
double-difference (DTDD) method, in the Supporting Information (Text S3).

Figure 3 presents an example of using the DTDD method to determine the precise relative position of 12 
events recorded at four nearby stations equipped with broadband sensors (instrument response shown in 
Figure  S12 with a digitizing rate of 100 samples per second) in Fox Creek, Alberta, Canada. The ERRs 
(Table S4) of these events are well determined (Text S4). Among them, we identify two cases of repeating 
pairs (F3 and F4, and F2 and F6) that satisfy the condition of significantly overlapped source areas (i.e., 
ERR > interevent distance; Figure 3b). We note that the decision for event pair F7 and F9 can be ambiguous 
because the interevent distance is approximately the same as the ERR of event F9. It is, therefore, possible to 
qualify events F7 and F9 as repeaters if a different threshold is used. For the purpose of this demonstration, 
we decide to take a more conservative approach by considering only events without any controversy.
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We first use event F3 as the template to cross-correlate with the other 11 events. To investigate the inconsist-
ency of the waveform-similarity-based identification approach, we systematically try a range of commonly 
used CC thresholds (Table S1), digital filters (Table S2), and data choices (single station with one channel, 
single station with three channels, two stations with one channel from each station, and two stations with 
three channels from each station, Table S1).

Figure 3c summarizes the results of misidentification using unfiltered waveforms. It is obvious that using 
data from more channels and/or stations can significantly minimize the chance of misidentification when 
the CC threshold is low (<0.90). Taking a CC threshold of 0.70 for example, using single-station (one chan-
nel) and two-station (six channels in total) data result in seven and three misidentifications, respectively. 
An increase in the CC threshold can dramatically reduce the misidentification ratio regardless of the data 
choice. However, the highest CC threshold does not necessarily lead to the correct answer. This is clear 
when we compare the results of setting the CC threshold to 0.90, 0.95, and 0.98. While a threshold of 0.90 
can work perfectly for all cases, an extremely high threshold of 0.98 fails to recognize event F4 as a repeater 
of event F3.

When digital filters are applied, the misidentification rate is generally higher as the bandwidth narrows 
(Figure S13). In the worst-case scenario, all 10 nonrepeating events are misclassified as repeaters of event F3 
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Figure 3.  Comparison between waveform-similarity-based and physics-based approaches using earthquakes that occurred in Fox Creek, Alberta. (a) Map 
showing the distribution of earthquake epicenters (blue stars) and seismograph stations (yellow triangles). (b) N-S cross section of the earthquake sequence. 
Events are numbered chronologically and source parameters are provided in Table S4. Stars and circles represent the projected hypocenters and rupture areas, 
respectively. (c, d) Correspond to the number of identified repeaters using events F3 and F2 as the templates, respectively. Dashed gray and fuchsia lines depict 
the total number of events (11) and the number of true repeaters (1), respectively. Different symbols correspond to different data set. If the true repeater is not 
identified, open symbols are used instead.
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when a CC threshold of ≤0.80 is chosen, a narrow band-pass (1–4 Hz) filter is applied, and only single-sta-
tion (one channel) data are used (Figure S13e). Like the results with unfiltered waveforms, there are specific 
combinations of CC threshold, spectral passband, and data choice that can achieve 100% recall rate with 
zero misidentification. Unfortunately, no general rule can be derived (Figure S13).

To further validate our findings, we repeat the aforementioned analysis for the other repeating pair 
(events F2 and F6). Figures 3d and S14 show the results of using event F2 as the template. Despite all the 
combinations of CC threshold, spectral passband, and data choice, we cannot find any case with a perfect 
score. Our results underscore the challenge and risk in identifying repeaters solely based on waveform 
similarity.

5.  Discussion and Conclusions
We have demonstrated that CC can be severely affected by many factors, including station azimuth, ep-
icentral distance, velocity structure (including site effect), focal mechanism, network geometry, orien-
tation of the source separation (horizontal vs. vertical), the choice of data (one specific channel or all 
three channels; one station or multiple stations), and the spectral passband used in data processing. Ad-
ditionally, the level of background noise and the length of template waveforms may further influence the 
CC's sensitivity to interevent distance (Gao & Kao, 2020). One vivid example is the relocated aftershock 
distribution of the Mount Lewis (ML 5.7) California earthquake that illuminate two faults with completely 
different orientations, even though all the relocated events have high waveform similarity (Kilb & Ru-
bin, 2002). Therefore, we argue that it is extremely difficult, if not impossible, to reliably identify repeaters 
solely based on waveform similarity as the correct choice of all controlling parameters cannot be made 
beforehand (Table S5).

It is worth pointing out that nearly all previous waveform-similarity-based studies choose the CC threshold 
and the number of channels based on data availability and/or quality (Table S1), not the most accurate 
recovery rate. Similarly, the choice of spectral passband depends mostly on the event magnitude and/or 
noise characteristics (Table S2). Since no combinations of the selected CC threshold, data set, and digital 
filter can guarantee the accuracy of repeater identification, as demonstrated in Figures 2 and 3, we suggest 
that previously reported repeating earthquakes may be questionable if they are determined solely based on 
waveform similarity. A systematic reevaluation of previous identification results and their interpretations/
hypotheses may be important and necessary.

In summary, robust identification of repeaters is very challenging. Our experiments systematically il-
lustrate that waveform-similarity-based method lacks the resolution to distinguish repeating and neigh-
boring events. In contrast, the physics-based approach is more reliable, but precise estimation of the 
interevent distance and source dimension for a large data set can be very labor intensive and time con-
suming (Table S5). An efficient solution is to use the waveform-similarity-based method as a preproc-
essor in the identification process (e.g., Cheng et al., 2007). We emphasize that choosing a proper filter 
is important for the optimal performance of waveform cross correlation (Gao & Kao, 2020). However, 
using unfiltered waveform data is necessary to maintain the correct time difference between P- and 
S-phases, which is crucial to repeater verification (e.g., L. Li et al., 2007, 2011). We also note that neither 
the waveform-similarity-based nor the physics-based approaches can work for data with a low SNR. 
Improving the quality of waveform data, therefore, can be the most effective way to correctly identify 
repeating earthquakes.

Data Availability Statement
The HRSN and Fox Creek event waveform data used in this study were downloaded from the Northern Cal-
ifornia Earthquake Data Center (NCEDC) (http://ncedc.org/hrsn/) and Incorporated Research Institutions 
for Seismology (IRIS) (http://ds.iris.edu/ds/nodes/dmc/), respectively. Seismic data are processed with 
Obspy (Beyreuther et al., 2010; https://docs.obspy.org). Figures are made with Matplotlib (Hunter, 2007; 
https://matplotlib.org) and Inkscape (https://inkscape.org).
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