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Executive Summary

This report presents the results of a study to develop a machine learning framework for
generating induced seismicity susceptibility maps, with focus placed on the Montney region of
northeastern British Columbia. Data was compiled from several publicly available and
proprietary data sources, and was comprised of earthquake data, geological data, and hydraulic
fracturing operational and survey data. Eight different machine learning algorithms were tested
across four sets of machine learning analyses.

The machine learning analyses conducted, with reference to the Montney region, include:

1) aclassification feature importance analysis, based on a combined dataset of all
geological and operational features at each hydraulic fracturing well;

2) aclassification susceptibility analysis, based on a restricted dataset limited to geological
features and those operational features that apply to susceptibility;

3) aclassification susceptibility mapping analysis, based on the restricted dataset of
geological and susceptibility-relevant features interpolated to a 2.5 km grid spacing; and

4) aregression severity analysis, based on a combined dataset of geological and
operational features that included the maximum magnitude of the induced seismicity
events associated with each well.

The classification analyses focussed on identifying the most important features and their
correlation with respect to the likelihood of a well being seismogenic or not; the regression
analyses focussed on identifying the most important features and their correlation with respect
to the maximum magnitude of the induced seismicity associated with each seismogenic well
(i.e., severity). The machine learning workflow included training and iteratively validating and
fine tuning each model, and then testing it against unseen data. The top performing models
were then selected for interpretation. The interpretation of the machine learning results was
further supported by a series of advanced numerical models using the 3-D hydraulic fracturing
simulator XSite™. These were used to provide mechanistically-based cause and effect insights
into key machine learning correlations that were unclear or counterintuitive.

The results for the classification and regression analyses found the Light GBM and Random
Forest machine learning models to be amongst the top performing models. The results for the
feature importance analysis found that, in general, geological features ranked higher in
importance than operational features. This lends itself to susceptibility mapping as most
operational features do not apply to spatial susceptibility. Specific to susceptibility, the depth to
the top of the basement was identified as the most important predictor of a well being
seismogenic. This was shown to have a negative correlation, meaning that shallower depths to
the basement increases the likelihood of a well being seismogenic. The numerical modelling
results support this finding, showing that the injection depth influences the extent to which the
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fluid pressure invaded zone is transmitted outwards from the injection point and hydraulic
fracture. For models simulating a deeper basement depth, the higher stresses resulted in a
significantly restricted invaded zone. As the modelled distance to the top of the basement
becomes shallower (i.e., lower stresses), fluid injection results in a larger volume of elevated
pore pressures. This in turn results in an increased likelihood of elevated pore pressures
interacting with a critically stressed fault in the basement to trigger an induced seismicity event.

The machine learning results were extended using the Light GBM and Random Forest models to
generate induced seismicity susceptibility maps based on a 2.5 km grid resolution for the
Montney region. Two sets of maps were generated for each machine learning model, one
relative to a minimum moment magnitude (My) of 1.1 and one for a minimum M,, of 2.0.
Overall, the locations of susceptible areas in both models agree with the historical location of
induced seismicity events. It is cautioned in using these maps that machine learning results are
subject to data errors, biases, censoring and overfitting, and therefore are not a perfect
predictor. Use must also consider the site specific geology, especially where these deviate from
general regional trends; machine learning analyses only report data relationships and
correlations, but do not connect these to cause and effect mechanisms. Susceptibility is also
distinctly different from hazard, with the latter being influenced by operational factors and
considering key questions like maximum magnitude potential.

A preliminary basis for developing induced seismicity hazard maps is presented in the form of a
regression analyses of maximum event magnitudes associated with seismogenic wells. The top
predictors for event severity were identified by the machine learning models as being: b-value
of events within 100 km of the well (negative correlation), standard deviation of pore pressure
gradient (positive correlation), and distance of well from the Cordilleran thrust belt (negative
correlation). A positive correlation between the standard deviation of the pore pressure
gradient and event severity concurs with the known influence of pore pressure
compartmentalization. A negative correlation between the distance of the well from the
Cordilleran thrust belt and event severity corresponds with the expected increase in fault
density towards the thrust belt and therefore the increasing likelihood of a hydraulic fracturing
operation encountering a critically stressed fault.

The numerical modelling proved to be especially useful for explaining other correlations that
were less clear or counterintuitive. The b-value was found to have a positive correlation
between higher values and higher event magnitudes, whereas more typically, lower b-values
suggest a higher likelihood of a large magnitude event. The numerical simulation results
showed that faults in stiffer rock masses are more susceptible to larger magnitude events, and
similarly, those within a strike-slip far-field stress regime are more likely to produce large
magnitude events (My 2 4). The latter was seen to relate to how the far-field stresses transform
onto the fault surface (relative to the fault orientation) and how much of the resulting fault
surface area is critically stressed. The simulations show that, for the same injection depth,
adversely oriented faults under a strike-slip far-field stress regime can be more critically
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stressed over a larger area and therefore are more sensitive to injected fluid pressures causing
slip over a large area beyond the area of the fluid pressure perturbation. In contrast, a fault slip
event might be triggered locally where the fluid injection pressures interact with the fault, but if
less of the fault is in a critical state (either due to the fault orientation or the far-field stress
state condition), the slip area and therefore the event magnitude might have a smaller upper
limit. This was seen to be the case for faults modelled assuming a reverse-fault far-field stress
regime for the same injection depth. These results were specific to the far-field stresses and not
the focal mechanism. The modelling results showed that in the case of fluid-injection induced
seismicity it is possible to generate a large magnitude event with a reverse fault focal
mechanism (locally) but in a strike-slip far-field stress regime (regionally). This depends on the
orientation of the fault experiencing the pore pressure increase, relative to the orientation of
the far-field stress regime.

Together, the machine learning and numerical modelling results suggest that if operating within
a strike-slip far-field stress regime in stiffer rocks and there is a lack of early, significant
seismicity (of My > 1 or 2) with increasing injection time, then this might be a sign that strain
energy is accumulating towards a potentially large event (M, > 4). Similarly, in the context of a
Traffic Light Protocol, the detection of a My, 2 event might be more concerning when the
formation targeted by the injection, or adjacent to it, is stiffer and if operating within a strike-
slip far-field stress regime.
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1. Introduction

A key recommendation in the independent report, Scientific Review of Hydraulic Fracturing in
British Columbia (Allen et al., 2019), was the need to develop a susceptibility map of induced
seismicity potential for northeastern British Columbia (NEBC). Cited was a similar map
developed for the Duvernay Play in Alberta using machine learning (Pawley et al., 2018).
However, the map produced by Pawley et al. was limited to the data relationships determined
by computer algorithms without connecting these to cause and effect mechanisms. Refining the
machine learning output through mechanistic validation would add considerable value in terms
of improved reliability for decision makers.

This report presents the results of research undertaken to develop an induced seismicity
susceptibility map for NEBC, with focus placed on the Montney region. Of interest was the
development of an initial susceptibility map, but also a framework and workflow to guide
practitioners in using machine learning to prepare induced seismicity susceptibility maps for
any region, or to update these as more data becomes available over time. Three key objectives
were targeted:

1. To compile data for NEBC, with focus on the Montney region, that integrates induced
seismicity data with geological data and well activity data (related to hydraulic
fracturing).

2. Toinvestigate and test different machine learning algorithms for their robustness in
identifying the most influential factors controlling induced seismicity for the Montney
region, and use this to develop an induced seismicity susceptibility map together with a
framework and guidelines for developing susceptibility maps using machine learning.

3. To validate and refine the machine learning results using 3-D numerical simulations to
investigate and improve understanding of the cause and effect relationships influencing
induced seismicity behaviour.

Reported are the results for each of these objectives, including the methodologies developed
and applied, and the corresponding results and key findings. Delivered are outcomes and
products in the form of a robust susceptibility map that can be used to help decision makers
with their planning of hydraulic fracturing activities and induced seismicity hazard management
planning. The results presented also help to identify areas requiring additional focused
research.

1.1. Previous Work

The rapid development of multivariate statistics and machine learning techniques to analyze large
data sets is especially attractive and conducive to the induced seismicity hazard problem (e.g.,
likelihood, severity, etc.). However, experience in doing so is limited, especially in considering the
influence of both geological and operational factors together. Distinguishing between these is of
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interest as the geological factors relate to the conditions that are in place and cannot be controlled
or manipulated (outside of avoidance); i.e. susceptibility. These differ from most operational factors
(i.e., those related to hydraulic fracturing and completions), which can be manipulated offering a
means to potentially mitigate induced seismicity hazards for a susceptible formation.

Several studies have recognized that a significant amount of geological, operational, and seismic
data is being collected from hydraulic fracturing activities, and the size and complexity of these
datasets have made traditional empirical and statistical analyses inefficient and ineffective. A study
by Pawley et al. (2018) combined tectonic, geomechanical and hydrological data with induced
seismicity data related to hydraulic fracturing operations in the Duvernay play in Alberta to train a
logistic regression algorithm to develop an induced seismicity potential map. Their results suggest
that the proximity to basement, formation overpressure, minimum horizontal stress, proximity to
reef margins, lithium concentrations, and natural seismicity rate are the dominant controlling
factors to triggering induced seismicity within the study area. Wozniakowska and Eaton (2020) used
logistic regression to investigate the influence of geological features on the distribution of induced
seismicity in the Montney Formation, and developed a susceptibility map of Seismic Activation
Potential (SAP) in the region. Their study indicated that distance to the Cordilleran deformation
front and injection depth are the most important features. Fox et al. (2020) used multivariate
statistical analyses, testing four different machine learning models, to investigate the correlation
between operational parameters and a limited set of geological parameters with induced seismicity
events in the Kiskatinaw Seismic Monitoring and Mitigation Area (KSMMA) and the North Peace
Ground Motion Monitoring Area (NPGMMA) of the Montney region. Their analyses examined both
likelihood and severity of induced seismicity events. The results showed that the simplest model
placed a relatively high negative importance on minimum horizontal stress and high positive
importance on geothermal gradient, distance between wells and mean proppant per stage, while
the more complex models placed a relatively high importance on Paleozoic structure and distance
to faults. In the magnitude regression analysis, most models have shown a relatively high
importance for the top of the Montney structure and distance to faults. Amini and Eberhardt (2021)
investigated the application of different machine-learning algorithms to determine the relative
importance of an expanded set of geological and operational parameters in relation to the
triggering of induced seismicity. They tested different algorithms using data related to hydraulic
fracturing activities in the Montney region. Their analyses showed that geological features generally
ranked higher than operational features with respect to correlation with wells associated with
induced seismicity. In all models, pore-pressure gradient ranked highly as having a significant
influence. Other important geological features included distance to basement, distance to known
faults and the azimuth of the maximum horizontal stress. The operational feature that most
consistently ranked as being important was the completion length.

This present study builds upon these previous studies, expanding upon the number of geological
features compiled and assessed, while also improving on the analysis and interpretation
methodologies developed.
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1.2. Study Area

The Lower Triassic Montney Formation is aerially extensive, covering approximately 130,000
km? from central Alberta to NEBC (National Energy Board, 2013). It is also thick, typically
ranging from 100 to 300 m, but thinning to zero at its eastern and northeastern margins while
increasing to over 300 m on its western margin before it begins outcropping in the Rocky
Mountains. The Montney Formation unconformably overlies Carboniferous or Permian strata
and consists of variable amounts of interbedded shale, siltstone, and sandstone. These strata
developed during the first of three major transgression-regression cycles (Edwards et al., 1994;
Gibson & Barclay, 1989). Based on the lithostratigraphy, Davies et al. (2018) subdivides the
Montney Formation into three members: the Upper, Middle, and Lower Montney. These
members are separated by a basin-wide unconformity that developed due to tectonic uplift of
the basin margin (Dixon, 2009).

The area of research for this project encompasses the Montney region of NEBC (Figure 1).
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Figure 1 — Map of the study area. Modified after Geoscience BC RFP 2019-01.
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1.3. Supplementary Materials
The following appendices are included with this report:

Appendix A: Feature Definitions — Detailed descriptions of each feature included in one or more
of the machine learning analyses.

Appendix B: Database and Codes — Included as separate folders and files to this report.

10| Page



2. Data Compilation and Preparation

Several datasets were compiled and integrated for this study using both public domain and
proprietary sources. These include seismic event catalogues, geological databases, and well and
hydraulic fracturing data. Each is discussed separately in the following subsections. Identified
from these were a number of geological and operational “features” that form the basis for the
machine learning analysis. Definitions of these features and details regarding their data quality
and completeness are provided in Appendix A.

2.1. Seismic Event Catalogue

The seismic event catalogue we compiled made use of several existing public-domain
earthquake catalogues. It should be noted that these catalogues include all recorded seismic
events without specifying whether they are natural earthquakes or induced seismicity events.
The necessary filtering for this is discussed in Section 2.4. The primary source was the catalogue
compiled by Enlighten Geosciences (Fox et al., 2020). This combines:

i) the Composite Alberta Seismicity Catalog by Fereidoni and Cui (2015);

ii) the Geological Survey of Canada (GSC) catalogue by Visser et al. (2017); and

iii) the BC Oil and Gas Commission (BCOGC) and GSC catalogue by (Babaie Mahani et al.,
2020).

Duplicate events were removed by Enlighten Geosciences resulting in a catalogue of 9843
seismic events recorded between January 1, 2000 and April 16, 2019. To this we added an
update to the GSC catalogue that included another 109 events recorded in the Montney region
between April 16, 2019 and February 17, 2020. This resulted in a final catalogue of 9949 events
used in this study, with moment magnitudes (My) ranging from 0.3 to 4.6 and a magnitude of
completeness (Mc) of 1.1 (see Fox et al., 2020).

The seismic event catalog provides two targets for our analysis. The first is the seismogenic
target, which indicates whether a well is associated with seismicity or not. The second is the
maximum magnitude of the events associated with each well. For the regression analysis, wells
without associated seismicity are excluded.

2.2. Geological Database

A high level of focus was placed on compiling data of different geological indicators (features),
as these represent the conditions in place that influence the susceptibility and seismogenic
potential of a given well location. For this analysis, 27 geological features were extracted from
the various sources consulted. These include:

i) aregional fault model by Petrel Robertson Consulting Ltd.;
ii) anisopach map of the top of the Precambrian basement by Enlighten Geosciences Ltd.;
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iii) geophysical logs accessed through geolLOGIC systems Itd.’s geoSCOUT database, which
was made available via a research license agreement between geoLOGIC and UBC; and
iv) the World Stress Map database (Heidbach et al., 2018).

Some geological features are used as proxies where more direct measurements are unavailable.
For example, gamma ray readings from geophysical logs are used as a proxy for clay
concentration. Recent examples of using features as proxies include Wozniakowska and Eaton
(2020) where they used distance to the Cordilleran deformation front as a proxy for strain rate,
and Pawley et al. (2018) where they used dolomite occurrences as a proxy for deep subsurface
faults. The compiled geological datasets are identified and described in detail in Appendix A.

2.3. Well and Completions Database

Hydraulic fracturing data for the Montney region was sourced from geoLOGIC systems Itd.’s
Well Completions & Frac Database (geoLOGIC) through their gDCweb software. This was made
available through a license agreement between geoLOGIC systems ltd. and Geoscience BC. The
data was compiled according to two groupings: a well dataset used to access hydraulic
fracturing information such as well completion length, fluid injection volume and number of
stages; and a stage dataset used to calculate parameters such as average injection rate,
maximum instantaneous shut-in pressure (ISIP) and maximum breakdown pressure for each
well. In total, data from 6,530 horizontal wells incorporating 95,807 hydraulic fracturing stages
was used. The data was structured according to wells and not well pads (although both were
identified) to maximize the number of data points for the machine learning analyses. A
complete listing of the well and completion parameters used is provided in Appendix A.

2.4. Data Preparation

The first step in data preparation required the events in the induced seismicity catalogue to be
spatially and temporally correlated with the database of well locations and hydraulic fracturing
activities, respectively. For this, the spatio-temporal filter developed by Amini and Eberhardt
(2019) was used. A spatial filter was applied to search for all event locations that were within a
5 km radius of an active hydraulic fracturing well. The 5 km radius represents the uncertainty in
the event location accuracy reported for the earthquake catalogue. Next, a one-month
temporal filter was applied relative to each well’s activity. Thus, if a seismic event was recorded
as occurring within 5 km of an active well and within 30 days from the start date of hydraulic
fracturing operations, it was considered to be an induced seismicity event. The corresponding
well was then labelled as being seismogenic. It should be noted that similar filtering techniques
have been used in other studies and have proven to be effective. However, it is also important
to recognize the limitations associated with their use. First is the fixed spatial filtering value. In
this case, the filter dismisses any induced events that are farther than 5 km away from the well
in question. Next is the duration of the temporal window. Verdon and Bommer (2020)
investigated the temporal evolution of hydraulic fracturing-induced seismicity events from case
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studies around the world. Their study showed the largest time-lag observed between the end of
hydraulic fracturing and an increase in seismic magnitudes was 23 days. Note that the 30-day
temporal filter used in this case is with respect to the start of hydraulic fracturing. Finally,
multiple wells can be associated with a single induced seismic event if they each meet the
spatial and temporal limits. Likewise, natural earthquakes can be mistakenly identified as
induced seismicity events if they meet the filtering criteria. Both are limitations that arises from
the uncertainty in calculating seismic event locations and can be improved over time as more
seismic stations are installed and the accuracy of event locations improve.

Use of the 5 km radius, 30 day spatio-temporal filter resulted in a subset of 937 events being
identified as induced seismicity events from the 9949 events contained in the seismic event
catalogue. From this, each well was classified as either having experienced induced seismicity or
not, assuming a minimum magnitude cut-off of 1.1 (Figure 2).
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Figure 2 — Location map of induced seismicity events and their magnitudes determined using a spatio-
temporal filter relative to well locations and activities.
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The geological data was next prepared by interpolating the available data for each feature to
obtain a distribution of values for the entire study area (the Montney region). This was done
using the Inverse Distance Weighted (IDW) interpolation tool in ArcGIS, which uses the 12
closest data points to interpolate a value for each designated point. The designated points were
defined according to two different needs (Figure 3). The first was to assign values for each
geological feature to each well in the database. This dataset was used to train and test the
performance of the machine learning algorithms with respect to identifying which factors have
the most influence on the occurrence of induced seismicity in the Montney region. The second
need was to assign values for each geological feature to a 2.5 km grid spacing for the entire
Montney region. This dataset was used as the input to the trained machine learning algorithms
to estimate the seismogenic activation potential across the Montney region, as required to
develop an induced seismicity susceptibility map.

The final data preparation step was to integrate the geological data, well completion data,
deviation surveys, and the combined seismic event catalogue. These were loaded and
processed using the open source programming language Python, and entailed standardizing the
Unique Well Identifiers (UWIs) and geospatial projections. The stage-by-stage completion data
for each horizontal well was aggregated, since the analysis was conducted on an individual well
basis. Wells were analyzed individually, meaning that wells on the same pad were not
aggregated but treated separately. Geospatial layers and deviation surveys were projected to
NAD83 UTM Zone 10N prior to distance calculations. The wells were then associated with the
combined seismic event catalogue and the data combined into a single data set.

Based on these data preparation steps, four separate datasets were generated from the
compiled database to be used as the input data for the different machine learning analyses:

i) Well Features Dataset: A dataset containing hydraulic fracturing well IDs, latitudes and
longitudes, the value of each geological and operational feature at each well location,
and whether the well was associated with seismic activity or not. This dataset was used
to train, test and validate the machine learning classification models used for a feature
importance analysis (Section 5.1).

ii) Well Susceptibility Dataset: A limited version of the Well Features Dataset that focusses
on the geological features and those operational features that are relevant to spatial
susceptibility mapping. Note that this excludes most well completions features, as these
do not apply to the pre-existing conditions that would relate to the susceptibility of a
new well location to induced seismicity. Exceptions include operational features that
serve as a proxy for the physical properties of the targeted formation, for example
breakdown pressure and instantaneous shut in pressure (ISIP). Another exception is the
well density (within 1, 3, 5, and 10 km of the observed well), which accounts for any
interference or preconditioning related to previous activities that may influence the
susceptibility of a new well in a given location. This dataset was used to train, test and
validate the machine learning models used for the susceptibility analyses (Section 5.2).
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Figure 3 — Procedure used to interpolate values for the geological features and assign to each well to
train and test the machine learning algorithms used, and to assign to a 2.5 km grid spacing for
development of an induced seismicity susceptibility map. The example shown is for thickness of the
Montney formation.
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iii) Montney Grid Dataset: A dataset containing latitudes and longitudes for a 2.5 km grid
spacing across the entire Montney region and the interpolated values of the Well
Susceptibility dataset at these locations. This dataset was used to generate induced
seismicity susceptibility maps using the best performing machine learning models
(Section 6).

iv) Induced Seismicity Severity Dataset: This dataset is similar to the Well Features Dataset
but with two differences: it only includes the wells that are seismogenic, and it includes
the maximum magnitude of the induced seismicity events associated with each well.
This dataset was used for the regression analysis to study the relationship between the
feature values and the severity of induced seismicity events (Section 7).

2.5. Data and Analysis Uncertainties

Considerable effort was taken to reduce errors and omissions related to the data, and
subsequently, the machine learning and numerical modelling performed. After compiling the
data, in some cases from several sources, it was manually inspected to complete the record for
each feature (via imputing, interpolation, etc.). Effort was also taken to manage uncertainty,
recognizing that uncertainty can take different forms (e.g., aleatoric, epistemic, etc.). These are
briefly described below:

Data Uncertainty: This includes the amount of data available for each feature analyzed, the
degree of variability in the observations (e.g., noise), and any errors in measuring, recording
or transcribing the data. Data coverage may be incomplete, irregular or require assumptions
in its calculation. For example, the b-value for each well is calculated from the induced
seismicity events that occur within a certain distance from the well, which is arbitrarily
selected. In this study, the distance used was 100 km, which was arrived at after some
sensitivity testing. In addition, because the distribution of induced seismicity events across
the Montney varies, the number of events available to base the calculation on for each well
varies significantly when comparing wells in different parts of the Montney (see geospatial
uncertainty below). Another relevant example is the seismogenic index, which includes the
injection volume in its calculation relative to the seismogenic response recorded. However,
the injection volumes are taken from the well and completions database, which is specific
to each well, whereas the seismogenic response is associated to a well based on a spatial-
temporal filter (as described in Section 2.4). The calculation of the seismogenic index
therefore combines factual data with interpolated data.

Geospatial Uncertainty: This recognizes that the geospatial distribution of data points across
the Montney is not uniform. There are areas with high concentrations of data focussed
around areas of past and present unconventional gas development, and areas with little or
no data in areas not yet developed. This distribution of data influences the quality of any
required interpolation. Another form of geospatial uncertainty arises from the focus placed
on using data from unconventional gas wells (i.e., those with hydraulic fracturing
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completions); data from wastewater disposal wells or older conventional wells were not
used. This means that any local stress changes or other influences resulting from
wastewater injection activities or older conventional gas production are not recognized and
accounted for in the interpretation of the machine learning results. Furthermore, the
omission of wastewater injection wells from consideration also means that any induced
seismicity events triggered from these activities that meet the spatial-temporal filter
criteria, relative to a nearby hydraulic fracturing operation, would be associated with the
hydraulic fracturing well.

Model Uncertainty: All statistical models are an estimation of reality and therefore are
imperfect. More specifically, machine learning models are subject to uncertainty resulting
from the procedures used to prepare the model, the choice and preparation of data, the
choice of hyperparameters used in training, and the interpretation of model output. As a
result, the machine learning model may have high bias where the model is underfitted (i.e.,
the data is poorly mapped), or high variance where the model has been overfitted (i.e., over
trained) and it has essentially memorized the given data relations without learning the true
data correlations. To minimize this, several steps are considered such as testing and
comparing multiple models and evaluating each model’s performance.
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3. Methodology

3.1. Machine Learning Overview

Machine learning algorithms can be broadly categorized as unsupervised or supervised (Figure
4). Unsupervised learning searches for previously unknown patterns within a data set
containing no pre-existing labels or known outcomes. Supervised learning uses labelled data for
which there is a known outcome and seeks to learn the patterns between the input features

and known outcome (Goodfellow et al., 2016).

For this study, each hydraulic fracturing well in the database is labelled with respect to a known
outcome; i.e., whether the well has been associated with one or more induced seismicity
events or not, and if so, the event magnitude(s). Accordingly, supervised learning was used to
fit the machine learning models to two analyses: likelihood classification (i.e. susceptibility) and
severity regression. Associated with each of these is feature importance. Likelihood
classification involves supervised learning using binary classification (Figure 4): a given well in
the database has either been associated with a past induced seismicity event or not (either yes
or no). Severity regression targets the maximum magnitude of the induced events associated
with each well. Although the likelihood classification and severity regression analyses require
different machine learning models, the initial data input used is the same.
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Figure 4 — Types of machine learning algorithms, classified as either unsupervised or supervised learning.
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In building a machine learning model, an important initial step is to first divide the available
data into a training split and test split (Figure 5). For this study, we used a standard 75%-25%
split, respectively. The test split is a sub-sample of the available data (e.g., 25% of all available
data) that is held back until the end of the model building and tuning process to provide an
unbiased evaluation of the final model performance on unseen data. This allows the prediction
error of the model to be calculated and for competing models to be compared to one another.
The training split is used to fit the machine learning model; the model learns from this data.

Model training involves further subdividing the training split into a training set and validation
set. The training set is used to train the model and the validation set is introduced as new data
to evaluate the fit of the model. Because this is an intermediary evaluation of the model fit,
separate from the final test analysis, the procedure can be carried out iteratively to improve
and fine-tune the model performance. In this study, we use the k-fold cross-validation
technique to iteratively tune the model. This procedure repeats the division of the training split
into training and validation sets so that all data in the training split serves at least one time as
the validation dataset, while being used to train the model during other iterations (Figure 5).

> Available Data >

training split test split
«

v
A
A4

validation set «4———— training set - »

Iteration 1 OOOOOOOdOOOOOOOOOOOOOOOOOOOOOOOO @0000000
validation set E
Iteration 2 OOOOOOOObOOOOOOObOOOOOOOOOOOOOOO

validation set
00000000 0000000000000
: validation set
Iteration k' | ©O00O000000O00000e000e0 00000000

o

Iteration 3 0000

v
test analysis
lecooe0e0]

Figure 5 — lllustration of the machine learning analysis procedure involving first dividing all available
data into a training and test split, and then sub-dividing the training split into a training and validation
data set. Shown is the k-fold cross validation procedure, which iteratively repeats the subdivision of the
training split to allow evaluation and fine-tuning of the machine learning model performance.
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The cross-validation tuning of the model is also used to prevent overfitting errors. Overfitting is
an error that occurs when a model result is too closely aligned to a limited set of data points
(training set) and may therefore fail to fit additional data (validation set) or predict future
observations reliably. Different machine learning algorithms employ a set of parameters known
as hyperparameters whose values are used to control the learning process. These
hyperparameters are used to tune the model to avoid overfitting. For this study, a Bayesian
search algorithm was used. This method is considered to be more advanced than other
algorithms such as grid search or random search. Models were trained using a 50-fold cross
validation (i.e., 50 iterations; Figure 5).

Evaluation of a model’s performance, whether against the validation data for intermediary
tuning of the model or test data for final evaluation of the model, can be carried out using a
number of metrics. For likelihood classification, one of the more complete means of evaluating
and visualizing model performance is the “confusion matrix”. The confusion matrix breaks
down the number of correct and incorrect predictions by the model, both with respect to the
yes and no (positive or negative) of the binary classification problem. This is illustrated in Figure
6. In this case, the binary problem is whether a hydraulic fracturing well has experienced
induced seismicity (seismogenic; positive) or not (non-seismogenic; negative). The model
predictions of seismogenic and non-seismogenic are then compared to the actual classification
of seismogenic and non-seismogenic.

Predicted Class
Seismogenic (Positive) Non-Selsm.ogenlc
(Negative)
Sensitivity/Recall

- Seismogenic True Seismogenic False Non-Seismogenic TP
@ Positi True Positi False Negati —_—
5 (Positive) (True Positive) (False Negative) TP T FN
E Specificity

< | Non-Seismogenic |False Seismogenic (False| True Non-Seismogenic TN
Negati Positi T Negati !
(Negative) ositive) (True Negative) TN + FP
Precision Negative Prediction Accuracy
TP TN PN

THE 42 8 TN + FN R A BT RS Y

Figure 6 — lllustration of a confusion matrix used to evaluate machine learning performance, and several
advanced performance metrics calculated from the confusion matrix.
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The confusion matrix can then be used to calculate more advanced classification metrics (Figure
6). Three of the more important of these are:

Accuracy: Represents the number of correct predictions (both true positive and true
negative) over the total number of predictions. This metric is best used for balanced
datasets (both positive and negative classes have significantly different number of data
occurrences).

Precision: Represents the ratio of true positive predictions to the total number of true and
false positive predictions. If there are no incorrect false positive predictions, then the model
has 100% precision. This metric is well suited for unbalanced datasets.

Recall: Represents the sensitivity of the model, by comparing the number of true positive
predictions to the total number of true positive and false negative predictions. Thus the
recall rate is penalized whenever an incorrect false negative is predicted. This metric is also
suitable for unbalanced datasets.

Precision is often used in cases where classification of true positives is a priority; the model has
a high success rate in correctly predicting seismogenic wells. Recall is often used in cases where
classification of false negatives is a priority. Ideally, both are desired in a good machine learning
classifier model. The Fl-score is a metric which takes into account both precision and recall and
is defined as follows:

2 * Recall * Precision
F1l-score =

Recall + Precision

For classification analyses, the F1-score is used to evaluate and compare the performance of
competing machine learning models. This is done by measuring precision and recall at the same
time and using a harmonic mean in place of the arithmetic mean to better account for extreme
values. This makes two models with low precision and high recall or vice versa, comparable.

3.2. Model Generation

3.2.1. Workflow

We compared the performance of eight different machine learning algorithms, first with
respect to the classification problem of induced seismicity occurrence (i.e., likelihood), and then
the regression analysis of the maximum magnitude of the induced seismicity events associated
with each well (i.e. severity). Figure 7 illustrates the workflow and the components of the
analysis, together with the metric used to evaluate the model performance.
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Figure 7 — Machine learning analysis workflow, examining both the classification problem of induced
seismicity likelihood and the regression problem of induced seismicity severity, and the corresponding
steps of model generation and interpretation.

For this analysis, the machine learning models were generated using SciKit-learn (Pedregosa et
al., 2011), which is a machine learning library for the Python programming language. The
workflow to generate each model is shown in Figure 8. The first step addresses data quality-
assurance and quality-control (QA/QC). The data within each database was manually inspected
to make sure the values were physically correct. For example, the depth to the top of the lower
Montney was checked to make sure it was not above the depth of the top of the Montney. This
step recognizes that transcription and recording errors are common in large datasets compiled
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from different sources (e.g., wells involving different operators and service providers). Next
outliers were removed after vetting for validity and manually checking whether the values were
well outside accepted ranges (e.g., anomalously high injection rates relative to those cited by
operators). This was followed by imputation to make sure there were no missing values for
each feature for each well. The data was then scaled to have zero-mean and unit-variance. This
step ensures that the scale of the data does not impact the performance of models that are
sensitive to this (e.g., logistic regression).

Data QA/QC

Outlier Removal Data Imputation Data Scaling

A 4

Exploratory Data Analysis

A 4

Model Tuning and Validation

Carrelation Matrix

Model Generation

Maodel
Validation

Hyperparameter

Training Model Tuning

Model Testing

Figure 8 — Workflow showing key steps taken in generating each machine learning model, including data
quality-assurance and —control (QA/QC), exploratory data analysis (EDA), and model tuning and
validation.

The second step involves performing an Exploratory Data Analysis (EDA) to summarize the main
characteristics of the data and determine which evaluation metric should be used when
comparing different model’s performances. The final step involves model tuning and validation
as described above (e.g., Figures 5 and 6). These two steps are described with the reporting of
the machine learning results.

3.2.2. Machine Learning Models Tested
The eight different models generated and tested for this study are listed and described in Table
1. Note that the dummy classifier model is only used to create a baseline for the other models.
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Table 1 — Summary descriptions of the different machine learning models used for the classification and

regression analyses.

Model Name Abbreviation | Description

Dummy Classifier Dummy A classifier that makes predictions using simple

(Pedregosa et al., 2011) Classifier rules. It does not use features when predicting
and is useful as a simple baseline to compare
with other classifiers.

Logistic Regression LR A linear model used for both classification and

(Walker & Duncan, 1967) regression. In this model, the probabilities
describing the possible outcomes of a single trial
are modelled using a logistic function.

Decision Tree DT A non-parametric supervised learning method

(Boehmke & Greenwell, 2019) used for classification and regression. The goal is
to create a model that predicts the value of a
target variable by learning simple decision rules
inferred from the data features.

Random Forest RF A random forest is an estimator that fits a

(Breiman, 2001) number of decision tree classifiers on various
sub-samples of the dataset and uses averaging to
improve the predictive accuracy and control
overfitting.

Support Vector Classifier SvC Support vector machine classifiers are a set of

(Cortes & Vapnik, 1995) supervised learning methods used for
classification, regression and outlier detection.

K-Nearest Neighbour KNN A non-parametric supervised/unsupervised

(Boehmke & Greenwell, 2019) learning method used for classification and
regression.

XGBoost GXB “Extreme Gradient Boosting”. It provides a

(Chen & Guestrin, 2016) parallel tree boosting to solve supervised learning
problems.

Light GBM LGBM “Light Gradient Boosting Machine”. Itis a

(Ke et al., 2017)

gradient boosting framework for machine
learning based on decision tree algorithms and
used for classification, regression and other
machine learning tasks.
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4. Exploratory Data Analysis (EDA)

An Exploratory Data Analysis (EDA) was performed to summarize the main characteristics of the
data and determine which metric should be used when evaluating model performances. First,
we look at label count (number of seismogenic vs. non-seismogenic wells) in the dataset. Table
2 shows that 20% of the wells are labelled as seismogenic and 80% as non-seismogenic.

Table 2 — Well label percentages.

Category Percentage
Seismogenic well 20%
Non-seismogenic well 80%

This difference in population is an indication of class imbalance (i.e., the majority of the wells
are non-seismogenic). Having an imbalanced dataset impacts a model in two ways. First, it
means there are fewer samples of seismogenic wells for the machine learning models to train
on. To overcome this, more weight was assigned to the seismogenic wells during training and
hyperparameter tuning. Second, when performing classification, the ‘accuracy’ metric can no
longer be used to evaluate the performance of the models.

A pair plot of several of the key features can be seen in Figure 9. The plot shows the pairwise
relationship between dataset features, which are colour-coded by their labels (i.e., seismogenic
or non-seismogenic). The diagonals include the univariate distribution plots that show the
marginal distribution of the data in each column. This shows that the distributions of features
are overlapping between seismogenic (orange) and non-seismogenic (blue) wells, which points
to the complex intrinsic relationships between the data and label. The overlap also
demonstrates why machine learning is required to analyze and determine trends in the data.

The correlation plot of seismogenic well classification is shown in Figure 10, and that for the
maximum magnitude regression is shown in Figure 11. The correlation plot is used to visualize
the linear relationship between the different features and the label. In these plots, the yellow
colour indicates a strong positive correlation and the dark blue indicates a negative strong
correlation. A weak (near zero) correlation lies in the middle in green. Based on this analysis,
three groups are identified as having high positive correlations:

e The depths to the Top of the Montney, Top of the Middle Montney and Top of the
Lower Montney.

e Distance from the injection point to the Top of the Montney and the Lower Formations
(either Debolt or Belloy).

e Well density at 3, 5 and 10 km radius.
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Another observation from the correlation plots is that none of the features have a high
correlation with the targets, either the labels for the classification analysis or the maximum
magnitudes for the regression analysis. This again shows the complex relationship between the
feature parameters and induced seismicity, and the need to use more advanced machine
learning analyses.

» n 0
Max_injection_Pressure Complition_Length
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Figure 9 — Pair plot of sub selection of features. The seismogenic well cases and distributions are coloured
orange, and the non-seismogenic well cases and distributions are coloured blue.
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Figure 10 — Correlation matrix for the classification analysis of induced seismicity likelihood.
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Figure 11 — Correlation matrix for the regression analysis of event magnitude severity.
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5. Susceptibility Analysis

5.1. Feature Importance (Geological and Operational Data)

The first analysis conducted was a classification analysis of feature importance. The
classification model provides a likelihood, and the feature importance technique uses machine
learning to assign a score to input features based on how useful they are at predicting a target
variable, in this case the likelihood of a well being seismogenic. For features, both the
geological and operational parameter datasets (i.e., Well Features Dataset; Section 2.4) were
used to train, test and validate the different machine learning models tested. (This differs from
the induced seismicity susceptibility analysis that follows in the next section where a number of
operational features are removed from consideration as they do not lend themselves to the
concept of susceptibility).

5.1.1. Model Training, Tuning and Comparison Testing
To begin, the integrated Well Features Dataset was split into a training set (75%) and test set
(25%). Table 3 shows the training results after tuning using a 50-fold cross validation (i.e., 50
iterations). The Dummy Classifier model was used to establish a baseline with 80% accuracy.
This model does not take features into consideration and predicts based on the most frequent
population. Since 80% of the wells in the dataset are non-seismogenic, the Dummy Classifier
predicts everything as non-seismogenic resulting in 80% accuracy. Accordingly, because no
wells are predicted to be seismogenic, the Precision and Recall (and therefore F1-score) for this

model are zero.

Table 3 — Cross validation results of the feature-importance classification models, which considers all
geological and operational features in the compiled Well Features Dataset. Values given are the average
over 50-fold iterations; values in parentheses are standard deviations.

Model

Validation
Accuracy

Validation
Recall

Validation
Precision

Validation
Fl-score

Dummy Classifier

0.789 (+/- 0.009)

0.000 (+/- 0.000)

0.000 (+/- 0.000)

0.000 (+/- 0.000)

Logistic Regression

0.679 (+/- 0.071)

0.707 (+/- 0.134)

0.372 (+/- 0.080)

0.484 (+/- 0.089)

Decision Tree

0.847 (+/- 0.053)

0.599 (+/- 0.150)

0.656 (+/- 0.139)

0.620 (+/- 0.130)

Random Forest

0.895 (+/- 0.034)

0.589 (+/- 0.142)

0.881 (+/- 0.102)

0.696 (+/- 0.116)

svC 0.891 (+/-0.042) | 0.656 (+/-0.122) | 0.799 (+/-0.124) | 0.715 (+/- 0.110)
KNN 0.856 (+/-0.036) | 0.546 (+/-0.126) | 0.719 (+/-0.127) | 0.611 (+/-0.102)
XGBoost 0.905 (+/- 0.038) | 0.684 (+/-0.133) | 0.843 (+/-0.116) | 0.748 (+/- 0.107)
Light GBM 0.919 (+/-0.039) | 0.724 (+/-0.124) | 0.877 (+/-0.111) | 0.788 (+/-0.105)
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Based on this analysis, the top four performing models (i.e., highest F1-scores) were selected to
be applied to the unseen test dataset. These were the Light GBM, XGBoost, Support Vector
Classifier (SVC) and Random Forest models. Figure 12 shows the confusion matrix results for
these four models, which returned the following F1-scores: Light GBM (77.4%), XGBoost
(70.1%), SVC (69.2%) and Random Forest (69.0%). These test scores were similar to the
validation F1-scores for these models, meaning that they perform well on unseen data (Figure
12). Thus, these four models were selected for detailed interpretation.

Light GBM

XGBoost Random Forest

True label

0 1
Predicted Class Predicted Class Predicted Class Predicted Class

Figure 12 — Confusion matrices for the trained model test results against unseen data for the top four
performing machine learning models, where label = 0 is a non-seismogenic well and label = 1 is a
seismogenic well. See Figure 6 for reference.

5.1.2. Model Interpretation

There is no mathematical definition of interpretability. A (non-mathematical) definition by
Miller (2017) is that interpretability is the degree to which the cause of a decision can be
understood. The higher the interpretability of a machine learning model, the easier it is to
understand the predictions being made. Several interpretation tools/methods are introduced
here and then used again in later sections. These include feature importance plots, SHAP
summary plots, and permutation importance plots.

Feature Importance Plots

Figures 13 to 15 show the feature importance plots resulting from the Light GBM, XGBoost and
Random Forest models, respectively. (Note that the feature importance plot for the Support
Vector Classifier model isn’t included here due to the high computational times it requires). The
importance of each feature in these plots is indicated as a coefficient; these coefficients do not
have any physical meaning and are used as relative values for comparison and not as absolute
values. Table 4 reports the top five important features for each of these models.
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Light GBM Classifier Feature Importance
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Figure 13 — Light GBM classifier results ranking feature importance for induced seismicity likelihood.

XGBoost Classifier Feature Importance
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Figure 14 — XGBoost classifier results ranking feature importance for induced seismicity likelihood.
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Figure 15 — Random Forest classifier results ranking feature importance for induced seismicity likelihood.

Table 4 — Top five ranked features with respect to importance in predicting induced seismicity likelihood
for a hydraulic fracturing well, for each of the top performing classifier models.

Rank | Light GBM XGBoost Random Forest

1 Depth to the top of Depth to the top of Depth to the top of
basement basement basement

2 S Variation of local Shmax Variation of local Shmax
Total injection volume ) . . . . .

from regional orientation from regional orientation

3 Variation of local Shmax Distance of well from Depth to the top of the
from regional orientation Cordilleran thrust belt Montney

4 P-wave velocity of Montney | P-wave velocity of Montney | Distance of well from
at well location at well location Cordilleran thrust belt

5 Minimum horizontal stress Minimum horizontal stress P-wave velocity of Montney
magnitude maghnitude at well location
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As shown in Table 4, all three top-performing classifier models rank the depth to the top of the
Paleozoic basement at the well location as the most important feature for correctly predicting
the likelihood of a well being seismogenic. There is also agreement regarding the importance of
the deviation of the orientation of the maximum horizontal stress at the well location relative
to bearing 045 degrees, which is the general regional orientation. This was the second ranked
important feature for the XGboost and Random Forest models, and the third ranked for the
Light GBM model. The other feature that ranked in the top five for all three models was the
average P-wave velocity for the Montney formation at the well location calculated from the
borehole sonic logs. Features that ranked in the top five for two of the three models include the
minimum horizontal stress magnitude and distance of the well from the Cordilleran thrust belt.
Other important features rounding out the top five for the models include the injection volume
and depth to the top of the Montney formation. Overall, the models generally ranked
geological features higher than operational features.

SHAP Summary Plots

SHapley Additive exPlanations (SHAP) analyses utilize a game theory approach to help interpret
predictions from complex model output. SHAP assigns each feature an importance value for a
particular prediction and shows there is a unique solution for each class of additive feature
importance that adheres to desirable properties (Lundberg & Lee, 2017). The SHAP Tree
Explainer tool is a subcategory of SHAP that is specifically built for interpreting tree-based
models such as decision trees, random forests and gradient boosting methods. The SHAP value
plot shows both the positive and negative relationships of the predictors for a target variable.

Figures 16 to 18 present the summary plots from the SHAP analyses for the top performing
classification models that are tree-based models (Light GBM, XGBoost and Random Forest). The
plots combine feature importance with feature impact. To read these plots, each feature is
ordered according to its importance (starting with the most important). Next, points are plotted
to show the distribution of the SHAP values using color to represent the feature value.
Overlapping points are stacked in the vertical direction to give a sense of the distribution of the
SHAP values. The impact of the stacked points (both positive and negative) is shown along the
horizontal axis. In doing so, the effect of a feature value (i.e., high value or low value) is shown
relative to its association with either a higher or lower prediction. For example, the SHAP
results for the Light GBM model (Figure 16) show that lower values of depth to the top of the
basement (blue points) generally have a higher positive correlation with a well being
seismogenic. The same correlation is seen in the other SHAP plots, as well as exceptions where
some higher values of depth to the top of the basement (red points) also have high positive
correlations with wells being seismogenic. This indicates that the depth of the basement by
itself isn’t a lone predictor but depends on other conditional factors related to the geology and
operations. Correlations determined through machine learning outputs do not establish a
cause-and-effect relationship (“correlation is not causation”).
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The most important operational feature in these plots is the total injected fluid volume, where
high injection volumes have a positive impact on model correlation. The influence of injection
volume is well studied and has been shown to have a positive correlation with induced
seismicity (Schultz et al., 2018; Fasola et al., 2019; Amini, 2020). The SHAP plots also show the
reverse, that a smaller injection volume has a high negative correlation. Hydraulic fracturing
wells with smaller injected fluid volumes have a significantly lower likelihood of triggering an
induced seismicity event.

The ranking of the total injected fluid volume as one of the top five important features in the
Light GBM, XGBoost and Random Forest SHAP analyses, differs from the feature importance
analyses where it only ranked highly in the Light GBM model. However, it should be noted that
the ranking order of feature importance in a SHAP analysis might differ slightly from those
reported in the feature importance plots. This is because the SHAP plots are calculated for one
instance of each model’s validation, whereas the ranking in the feature importance plots is
based on an averaging of 50 cross validation runs. Still, features such as depth to the top of the
basement, azimuth variation between the local and regional maximum horizontal stress, and
minimum horizontal stress, ranked highly in both the SHAP and feature importance analyses.
The SHAP analysis results then add further transparency and interpretability, showing the
relative impact of each feature on either a higher or lower prediction and whether it correlates
positively or negatively with the likelihood of a well being seismogenic.
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Figure 16 — Light GBM model SHAP summary plot. See text for explanation.
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Figure 17 — XGBoost model SHAP summary plot. See text for explanation.
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Figure 19 provides the SHAP analysis results for the other top performing model, the Support
Vector Classifier (SVC) model. As previously noted, the SHAP Tree Explainer tool used for the
other classifier models is specifically built for interpreting tree-based models. The SVC model is
not a tree classifier and requires use of a kernel explanation tool instead. This procedure is
computationally very heavy and time demanding. For the analysis shown in Figure 19, a subset
of 300 data samples was used instead of the full dataset. Therefore, this analysis is less accurate
compared to the SHAP plots shown for the other models. This is reflected in the order of
feature importance, which is somewhat different from the previous models (note that a feature
importance plot was not possible for the SVC model for further comparison). Features such as
the thickness of the Montney, the breakdown pressure, and number of hydraulic fracturing
stages appear in the top five with respect to importance. Still some similarities can be seen such
as the importance of the depth to the top of basement and the azimuth variation between the
local and regional maximum horizontal stress being among the top five important features.
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Figure 19 — Support Vector Classifier (SVC) model SHAP summary plot. See text for explanation.
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Permutation Importance Plots

Permutation importance analyses (Breiman, 2001) measure the increase in the prediction error
of a model if a feature’s values are permuted. In other words, a feature is deemed important if
shuffling and reordering its values increases the model error as this indicates the model relied
on the feature for a correct prediction. If shuffling and reordering the feature’s values leaves
the model error unchanged, then the feature did not have any significant influence on the
model’s ability to correctly predict and is unimportant. This procedure breaks the relationship
between the feature and the target prediction, and thus the decrease in the model score is
indicative of how much the model depends on the feature.

The permutation importance plots for the four top performing machine learning models are
provided in Figures 20 to 23. The y-axis of these plots shows the features in order of their
importance with the most important feature being listed at the top. The x-axis shows the model
score loss (i.e., increase in model error). These values do not have any physical meaning and
simply provide a relative measure for comparison. The error values for each feature are
reported as a box plot where the lower and upper edges of the box indicate the 25 and 75"
percentiles, respectively, and the central mark indicates the median. The whiskers extend to
the most extreme data points not considered to be outliers. Outliers are plotted as individual
points (i.e., open circles in this case).
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Figure 20 — Light GBM model permutation importance plot. See text for explanation.
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XGBoost Permutation Importances
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Figure 21 — XGBoost model permutation importance plot. See text for explanation.
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Figure 22 — Random Forest models permutation importance plot. See text for explanation.
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The results from the permutation importance analyses for the tree-based classifier models (Light GBM,
XGBoost and Random Forest) support the previous results derived from the SHAP analyses. Again, these
show that the depth to the top of basement and azimuth variation between the local and regional
maximum horizontal stress are highly important as geological factors, while the total volume of fluids
injected is one of the most important operational factors. More specifically, the permutation
importance plots show that these three features contribute significantly more to correct predictions
than the others. For the other features, as their importance decreases, the model’s sensitivity to these
features also decreases.

The SVC permutation importance results in Figure 23 show a different response. The most important
features in this case are the bulk density and pore pressure gradient, but the results also show a high
sensitivity to a much wider range of features. This sensitivity to all features for the SVC model is
reflective of the need to use a nonlinear kernel, in contrast to the tree-based classifier models. The
difficult interpretability of the SVC model results cautions whether it is a suitable model for this specific
purpose (i.e., induced seismicity susceptibility analysis).

SVC Permutation Importances

Bulk_Density 1 ] o
PP_grad —_— =]
Active_Days 4 [y S—— L]
Avg_Frac_Spacing _— N o
Avg_Inj_Rate o1 }—00 o
" Max_Pb 0 — . @
BHCPv 4 (] —_—
Max_nj_P ]
Max_ISIP 4 _— M Y
Comp_Length B ——————— ——
Dist_Faults § o . w— | o @ o
FAwg_Prop/Meter 4
Gamma_Ray o _— o
pograd_SD 00 ———®
Awg_Vol/Meter 4 o ocoo
WellDensity-3km o
Dist_MidMon 4 —_— 3 0
Well_Shmax_Azdiff 4 { ¥ o o
Total_Prop o oo o
Awg_Velume/Stage -_— ) o
WellDensity-1km —
Mon_Thickness 4 _— o
Dist_TopMon 4
Dist_Basement 4
WellDensity-10km o
Awg_Prop/Stage - —_—
Shmin 4 —_—
Number_Stages —_—l
Shmax_variation 4
Total_Volume 1 o oo
Shear_Strain 4 —_—
Dist_CTB 4 oo
Basement_Top (=]
b_value 4 [+ _— 00
Montney-Top
TVD A —_— T —
Seismao_index Cb— o0
0.00 0.01 .02 0.03 0.04 0.05 0.08

Model Score Loss

Figure 23 — SVC model permutation importance plot. See text for explanation.
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5.2. Induced Seismicity Susceptibility (Geological Data)

The objective of developing an induced seismicity susceptibility map builds on the feature
importance analysis presented in the previous section, but does so recognizing that not all
features lend themselves to susceptibility. Susceptibility maps combine different features that
contribute to a hazard to give an indication of where the hazard is more likely to occur; it refers
to the spatial likelihood or probability of the hazard occurring but not the temporal. In the
context of this study, data is being utilized from existing hydraulic fracturing wells to predict the
susceptibility of a new well at a given location to being seismogenic. This differs from hazard
maps, which include reference to a time frame to also consider the hazard frequency (temporal
reoccurrence) and magnitude of the hazard event. The terms susceptibility and hazard are
often erroneously used as synonymes.

Thus, the next step was to repeat the feature importance analysis but using the Well
Susceptibility Dataset (Section 2.4), which limits the models to only those features that lend
themselves to susceptibility. This includes the geological features plus any operational features
that act as a proxy for formation properties (e.g., breakdown pressure, instantaneous shut-in
pressure) or account for possible preconditioning of a given area related to previous hydraulic
fracturing activities (e.g. well density).

With respect to severity, the susceptibility analysis only speaks to the magnitude distribution of
the induced seismicity events making up the seismic event catalogue used. This had a
magnitude of completeness (Mc) of 1.1, meaning that reference to susceptibility in the analysis
that follows is with respect to the likelihood of generating an induced seismicity event with a
minimum magnitude of 1.1.

5.2.1. Model Training, Tuning and Comparison Testing

The same procedures as explained in Section 5.1.1. were followed in order to train and test the
susceptibility-focussed classification models. Again, a 75%-25% split was used for the training
and testing sets, respectively. Table 5 presents the final cross-validation results of the model
training in which the analysis was restricted to the reduced susceptibility-focussed data set. As
before, model training and tuning was carried out using a 50-fold cross validation (i.e., 50
iterations) and the Dummy Classifier model was used to establish a baseline with 80% accuracy.

Examining the cross validation results (Table 5), the top three performing models (i.e. highest
Fl-scores) were the Light GBM, XGBoost and Random Forest models. These were the same top
performing tree-based models as determined for the feature importance analysis, and were
subsequently selected to be applied to the unseen test dataset. Figure 24 shows the confusion
matrix results for these three models, which returned the following F1-scores: Light GBM
(73.4%), Random Forest (70.1%) and XGBoost (61.6%). The F1-scores of the Light GBM and
Random Forest models were similar to their validation training F1-scores in Table 5, meaning
they perform well on unseen data. In contrast, there is a 10% difference between the XGBoost
model’s training and testing F1-scores (72.6% and 61.6%, respectively).
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Table 5 — Cross validation results of the susceptibility-focussed classification models, which considers all
geological features but only those operational features that serve as a proxy for formation properties.
Values given are the average over 50-fold iterations; values in parentheses are standard deviations.

Model

Validation
Accuracy

Validation
Recall

Validation
Precision

Validation
Fl-score

Dummy Classifier

0.801 (+/- 0.004)

0.000 (+/- 0.000)

0.000 (+/- 0.000)

0.000 (+/- 0.000)

Logistic Regression

0.639 (+/- 0.066)

0.591 (+/- 0.118)

0.301 (+/- 0.061)

0.396 (+/- 0.071)

Decision Tree

0.861 (+/- 0.036)

0.659 (+/- 0.109)

0.658 (+/- 0.111)

0.652 (+/- 0.086)

Random Forest

0.904 (+/- 0.030)

0.641 (+/- 0.125)

0.850 (+/- 0.102)

0.722 (+/- 0.099)

SvC

0.858 (+/- 0.041)

0.447 (+/- 0.154)

0.741 (+/- 0.192)

0.546 (+/- 0.149)

KNN

0.844 (+/- 0.034)

0.416 (+/- 0.127)

0.682 (+/- 0.168)

0.508 (+/- 0.129)

XGBoost

0.904 (+/- 0.032)

0.662 (+/- 0.137)

0.823 (+/- 0.100)

0.726 (+/- 0.107)

Light GBM

0.905 (+/- 0.035)

0.660 (+/- 0.137)

0.833 (+/- 0.113)

0.729 (+/- 0.111)

Light GBM

True label

0

1

Predicted Class

Random Forest

Predicted Class

XGBoost

Predicted Class

Figure 24 — Confusion matrices for the trained model test results against unseen data for the top three
performing susceptibility-focussed classifier models, where label = 0 is a non-seismogenic well and label =
1is a seismogenic well. See Figure 6 for reference.

To investigate the performance of the XGBoost model further, Figure 25a plots the receiver
operating characteristic (ROC) curves for the top three performing models being compared. A
ROC curve depicts the diagnostic ability of a binary classifier system as its discrimination
threshold is varied. It plots the true positive rate (Recall) against the false positive rate (1 —
Specificity; see Figure 6) at various threshold settings. The best possible prediction method
would yield a point in the upper left corner of the ROC plot (True Positive Rate = 1, False
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Positive Rate = 0), representing 100% sensitivity (no false negatives) and 100% specificity (no
false positives). A random guess would plot along a diagonal line (line of no-discrimination)
from the bottom left to the top right corners. Thus, a better performing model would generate
a ROC curve that is closer to the upper left corner of ROC space. As shown in Figure 25, both the
Light GBM and Random Forest models are performing similarly and better than the XGBoost
classifier. This is in agreement with the results of F1-score calculations. Figure 25b plots the
ROC curves for all models that were tested, for comparison.
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Figure 25 — Receiver operating characteristic (ROC) curves, comparing those for: a) the top three
classifiers, and b) all classifier models.
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Based on the model validation and test results, the Light GBM and Random Forest models were
selected as the best performing models and were used for model interpretation and generating
induced seismicity susceptibility maps.

5.2.2. Model Interpretation

Feature Importance Plots

The training results for the Light GBM and Random Forest models were further analyzed to
investigate their ranking of feature importance with respect to induced seismicity susceptibility.
Figures 26 and 27 show the feature importance plots computed. Table 6 reports the top five
important features for each of these models.

As would be expected, the results show a similar ranking of the top five important features for
the susceptibility analysis as the previous feature importance analysis, minus the operational
factors that were excluded from the susceptibility analysis. This was limited to total injection
volume, which appeared in the top five for the Light GBM model and was replaced by the depth
to the top of the Montney formation. However, without consideration and weighting given to
the operational features not included, the order of the individual rankings also slightly changed
for each model. In the case of the Random Forest model, the minimum horizontal stress
magnitude replaced the average P-wave velocity of the Montney at the well location in the top
five. Overall, both models show similar results with respect to the ranking of feature
importance specific to induced seismicity susceptibility.
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Figure 26 — Feature importance results for the Light GBM classifier model with respect to induced
seismicity susceptibility.
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Random Forest Classifier Feature Importance

Basement_Top
Shmax_variation
Shmin

Dist_CTB
Montney-Top
BHCPv
Bulk_Density
b_value
Mon_Thickness
Dist_Faults
Max_Pb
Shear_Strain
Max_ISIP

PP _grad
Dist_Basement
Gamma_Ray
ppgrad_SD
Dist_TopMon
Dist_MidMon
Seismo_index
WellDensity-10km
WellDensity-3km
WellDensity-1km

F
0.0

™ T
0.2 0.4

o T
0.6 0.8

Normalized Feature Importance

1.0

Figure 27 — Feature importance results for the Random Forest classifier model with respect to induced

seismicity susceptibility.

Table 6 — Top five ranked features with respect to importance to induced seismicity susceptibility, for
each of the top performing classifier models.

Rank | Light GBM Random Forest

1 Depth to the top of Depth to the top of
basement basement

2 Minimum horizontal stress Variation of local Shmax
magnitude from regional orientation

3 Variation of local Shmax Minimum horizontal stress
from regional orientation magnitude

4 Depth to the top of the Distance of well from
Montney Cordilleran thrust belt

5 P-wave velocity of Montney | Depth to the top of the
at well location Montney
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Partial Dependence Plots

Partial dependence plots (PDP) show the marginal effect a feature of interest has on the
predicted outcome of a machine learning model (Friedman, 2001). The analysis works by
marginalizing (i.e., integrating) the model output over the distribution of the other features, so
that the resulting relationship only depends on the feature of interest. The plot will then show
whether the relationship is monotonic, linear or more complex across the feature’s range of

values in the dataset.

Figures 28 and 29 show the PDP for several features of interest for the Light GBM and Random
Forest classifier models, respectively. Note that the x-axes are plotted in zero-mean and unit
variance. The black tick marks at the bottom of the plot represent the deciles of the distribution
of feature values. The results for the influence of distance from known faults provides a first
example. The PDP for this feature show a relatively monotonic (i.e., constant) relationship,
indicating that the distance from known faults has a similar impact on the model’s predictions
across its range of values in the dataset. There is a small, notable step in the trend indicating
that lower values (i.e., wells closer to known faults) have slightly more impact than higher
values (i.e., wells farther from known wells). However, this shift is relatively small compared to
those seen for other features. For example, both sets of results (Light GBM and Random Forest)
show that shallower depths to the top of the basement have a relatively high impact on the
model predictions up to their mean value; values greater than the mean depth see a sharp
linear decrease in the impact the feature has on the predicted outcome.
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Figure 28 — Partial dependence plot (PDP) for the Light GBM classifier model with respect to induced
seismicity susceptibility. See text for explanation. Note that the x-axes are plotted in zero-mean and unit-
variance.
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Figure 29 — Partial dependence plot (PDP) for the Random Forest classifier model with respect to induced
seismicity susceptibility. See text for explanation. Note that the x-axes are plotted in zero-mean and unit-
variance.

Individual Conditional Expectation Plots

Individual conditional expectation (ICE) plots provide an extension to the partial dependence
plots (PDP). Whereas PDPs show the average effect of a feature’s value range on the predicted
response, ICE plots disaggregate these averages to show the relationship for each instance
(Goldstein et al., 2015). Thus, the plots are comprised of a series of trend lines with each
representing the effect of varying the feature’s value for a particular instance on the model’s
prediction, while the values for all other features remain constant. This allows the ICE plots to
be used to highlight variations in the fitted model across the value range of a feature, and to
suggest where and to what extent heterogeneities (i.e., interactions) might exist.

Figures 30 and 31 show the ICE plots for several features of interest for the Light GBM and
Random Forest classifier models, respectively. The average dependence trend line, coinciding
with that from the PDP, is shown as a thick blue line. In this case, the y-axes are scaled to show
the full partial dependence range (0 to 1). As before, the x-axes are plotted in zero-mean and
unit variance, and the black tick marks at the bottom of the plot represent the deciles of the
distribution of feature values. Using the same example as before to start, the ICE plot for
influence of distance from known faults shows that the partial dependence of this feature on
average is relatively constant (as already indicated based on the PDP). However, when looking
at the partial dependence trends of the individual instances, it can be seen that there are cases
with a higher variation across the range of values for the feature. This suggests that for some
wells, the sensitivity to faults being nearby is greater with respect to induced seismicity
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susceptibility, but in general the partial dependence decreases with distances being farther
away from known faults. Again, for distances from the top of the basement, most instances
show a sharp decrease in sensitivity for those deeper than the mean value, and this trend is
fairly consistent for the different instances.

Partial dependence
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Figure 30 — Individual conditional expectation (ICE) plot for the Light GBM classifier model with respect to
induced seismicity susceptibility. Note that the x-axes are plotted in zero-mean and unit-variance.
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Figure 31 — Individual conditional expectation (ICE) plot for the Random Forest classifier with respect to
induced seismicity susceptibility. Note that the x-axes are plotted in zero-mean and unit-variance.
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SHAP Summary Plots

Figures 32 and 33 present the summary plots from the SHAP analysis for the Light GBM and
Random Forest models, respectively, with regards to induced seismicity susceptibility. These
results reflect those seen in the feature importance plots, and indicate whether the correlation
between the feature values and induced seismicity susceptibility is positive or negative.
Features such as depth to top of basement, azimuth variation between local and regional
maximum horizontal stress, and distance to the Cordilleran thrust belt have a negative
correlation with induced seismicity susceptibility. For example, wells closer to the Cordilleran
thrust belt have a higher susceptibility to being seismogenic. In contrast, features like pore
pressure gradient and seismogenic index have a positive correlation. The influence of pore
pressures in the Montney has been studied by Eaton and Schultz (2018), who demonstrated a
positive relationship between over-pressured areas and induced seismicity. The positive
correlation determined for the seismogenic index is also logical as by definition, higher
seismogenic indexes indicate a higher sensitivity to fluid injection-induced seismicity
(independent of the injection parameters).

Another observation from the SHAP summary plots is that although several features have a
clear correlation with induced seismicity susceptibility, a number of features do not. For
example, smaller values of the minimum horizontal stress have a negative correlation, but
many small values also have a positive correlation. Similarly, larger values of the minimum
horizontal stress do not have a strictly positive impact and therefore a clear distinction cannot
be made.
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Figure 32 — SHAP summary plot for the Light GBM classifier model with respect to induced seismicity
susceptibility.
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Figure 33 — SHAP summary plot for the Random Forest classifier model with respect to induced seismicity

susceptibility.

Permutation Importance

Figures 34 and 35 show the permutation importance plots for the Light GBM and Random
Forest models, respectively, with regards to induced seismicity susceptibility. Comparing these,

both models are most sensitive to the depth to the top of the Basement.

Otherwise, the Light GBM model is most sensitive to the top five important features, which
includes: depth to top of basement, azimuth variation between local and regional maximum
horizontal stress, the depth to the top of the Montney, the b-value and minimum horizontal
stress magnitude. The Random Forest model is most sensitive to only the top three features:
depth to top of basement, azimuth variation between local and regional maximum horizontal

stress, and the depth to the top of the Montney.
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Light GBM Permutation Importances
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Figure 34 — Permutation importance plot for the Light GBM model with respect to induced seismicity

susceptibility.
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Figure 35 — Permutation importance plot for the Random Forest model with respect to induced seismicity

susceptibility.
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6. Induced Seismicity Susceptibility Maps
6.1. Cut-Off Magnitude 1.1

Machine learning results from the top two performing classification models, Light GBM and
Random Forest, were used to generate induced seismicity susceptibility maps for the Montney
region. This involved applying the tuned and tested models to the Montney Grid Dataset to
calculate the probability of induced seismicity for each grid point entry in the dataset. This
approach differs from the recent work of Wozniakowska and Eaton (2020) where probabilities
were calculated at the well locations and then interpolated throughout the Montney region. As
described in Section 2.4, the Montney Grid Dataset contains latitudes and longitudes on a 2.5
km grid spacing, for which the corresponding feature values are interpolated from the Well
Susceptibility Dataset (Figure 3). The Montney Grid Dataset represents unseen data by the
models.

It should be noted that the output of the classification model is the probability of a given grid
point being seismogenic. No error is associated with the calculated probabilities, although this
can be inferred from the standard deviations calculated for the cross-validation results. When
the probabilities are calculated, the initial classification of seismogenic or non-seismogenic
requires a user-defined probability threshold. For this study, we used the standard default
probability threshold of 50%. This means that the model algorithm classifies a sample as being
positive (i.e., seismogenic) if the probability of that sample being positive is greater than 50%,
and classifies a sample as being negative if the probability of that sample being positive is less
than 50%.

Figures 36 and 37 present the susceptibility maps generated from the Light GBM and Random
Forest models, respectively. Both maps show the same induced seismicity hotspots, but differ
in that areas with probabilities greater than 10% are more concentrated around these hotspots
for the Light GBM susceptibility map and are more dispersed for the Random Forest
susceptibility map. As previously discussed in Section 5.2, susceptibility maps only report the
spatial probability of a hazard, in this case a well location being seismogenic; they do not report
the temporal probability or related level of hazard (i.e., expected magnitude of the induced
seismicity event). Instead, information on induced seismicity severity derived from these maps
is limited to that of a minimum threshold defined by the magnitude of completeness of the
seismic catalogue used to train the machine learning models.

Accordingly, the susceptibility maps presented in Figures 36 and 37 show the probability of a
location generating an induced seismicity event with a magnitude greater than 1.1.
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Figure 36 — Induced seismicity susceptibility map for the Montney region for events with a minimum

magnitude of 1.1 based on results from the Light GBM machine learning model. Included are outlines of
the North Peace Ground Motion Monitoring Area (NPGMMA) to the northwest, and Kiskatinaw Seismic
Monitoring and Mitigation Area (KSMMA) to the southeast.
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Random Forest Model
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Figure 37 — Induced seismicity susceptibility map for the Montney region for events with a minimum
magnitude of 1.1 based on results from the Random Forest machine learning model. Included are
outlines of the North Peace Ground Motion Monitoring Area (NPGMMA) to the northwest, and
Kiskatinaw Seismic Monitoring and Mitigation Area (KSMMA) to the southeast.
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To evaluate the accuracy of the generated induced seismicity susceptibility maps, Figure 38
reproduces these with the locations of historic events superimposed on top. This comparison
shows that there is a good match between the locations of historic induced seismicity events
and areas identified by the susceptibility maps as having high probabilities of seismic potential.
For the Light GBM susceptibility map, there are a small number of isolated events that are
located within areas identified as having low probabilities (0-10%). In contrast, because the
probabilities in the Random Forest susceptibility map are more distributed, it shows these
isolated events as falling within areas with higher probabilities.
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Figure 38 — Locations of historic induced seismicity events (greater than magnitude 1.1) superimposed on
top of the susceptibility maps generated from the Light GBM and Random Forest classification models.

Figure 39 shows a second comparison, but this time superimposing the locations of all hydraulic
fracturing wells in the study area. Two areas are highlighted, circled in yellow and orange,
where there are a large number of wells but no or very few recorded induced seismicity events.
Both models show these areas as having low probabilities of seismic potential. This agreement
demonstrates that the models perform well with respect to both areas with low and high
seismic potential probabilities.

Lastly, circled in red is an area that both models predict as having a high susceptibility to
induced seismicity, which has seen a lower concentration of wells compared to other
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concentrated areas of well development activity. If development begins to extend into this
area, these can be used to further test the predictive performance of the machine learning
models and corresponding induced seismicity susceptibility maps.
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Figure 39 — Locations of existing hydraulic fracturing wells superimposed on top of the susceptibility
maps generated from the Light GBM and Random Forest machine learning models. Areas highlighted by
the yellow and orange circles are those with a high population of wells but few recorded induced
seismicity events (with a magnitude greater than 1.1). The area circled in red is one that both models
show to be susceptible to induced seismicity but where there are fewer drilled wells.

6.2. Cut-Off Magnitude 2.0

The induced seismicity susceptibility maps presented in the previous section were developed to
maximize the data available. In general, machine learning models improve their predictive
performance with increasing dataset size. By maximizing the data available, specifically that in
the seismic event catalogue, the resulting maps indicate the seismic potential relative to the
magnitude of completeness of the seismic event catalogue used to train the models. In this
case, the magnitude of completeness of the full dataset was 1.1, and therefore the maps show
the spatial probability of an induced seismicity event with a minimum moment magnitude (My)
of 1.1.
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It is also recognized that there might be other minimum event thresholds that are of interest.
For example, focus might be placed on large events with a minimum magnitude of 4.0, as this is
the threshold used in the B.C. Drilling and Production Regulation (DPR, 2021; section 21.1)
when hydraulic fracturing and fluid injection activities must be suspended. However, this
results in a dataset that is much too small to conduct a machine learning analysis. Alternatively,
a minimum threshold of 2.0 is used by the Alberta Energy Regulator (AER, 2015) as part of their
traffic light protocol for the Duvernay, where requirements switch from a green light and
normal operations to a yellow light and the need to report and mitigate. This offers a possible
compromise.

The key impact that increasing the cut-off magnitude has on the machine learning model is that
the number of seismogenic wells in the dataset decreases, thereby resulting in the data
becoming more imbalanced. Otherwise, the steps to prepare and process the data are exactly
the same as before, as are the steps to train, validate, and test the models. Figure 40 plots the
receiver operating characteristic (ROC) curves for the different machine learning classification
models being compared, relative to their performance using the susceptibility-focussed dataset
(see Section 5.2). The results indicate that the Random Forest, XGBoost and Light GBM models
performed similarly, and significantly better than the other models.
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Figure 40 — Receiver operating characteristic (ROC) curves for the classifier models tested against the
susceptibility-focussed dataset with a minimum event cut-off of magnitude 2.0.
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In order to allow comparison with the previous susceptibility results (with a cut-off magnitude
of 1.1), the Light GBM and Random Forest models were carried forward and applied to the
Montney grid dataset. Table 7 shows the top five important features identified by these
models, together with those for the magnitude 1.1 cut-off for comparison. The results show
that by filtering out induced seismicity events with magnitudes less than 2.0, the models’
sensitivity to different features has changed. Although features like depth to the top of the
basement are still ranked as being highly important, other features like the distance of the well
from the Cordilleran thrust belt increase in importance. Other features like azimuth variation
between the local and regional maximum horizontal stress were seen to drop from the top five,
whereas other features like the regional shear strain, standard deviation of the pore pressure
gradient and average bulk density of the Montney at the well location, rise into the top five
important features. The importance of distance from the Cordilleran thrust belt and regional
shear strains possibly points to their association with stored tectonic strain energy
accumulated, and therefore energy release potential and larger event magnitudes. The
importance of standard deviation of the pore pressure gradient possibly points to zones of
overpressure contributing to larger magnitude events. The importance of features relative to
induced seismicity event magnitude is investigated more explicitly through a machine learning
regression analysis in Section 7.

Table 7 — Top five ranked features with respect to importance in predicting induced seismicity
susceptibility, for datasets limited to a minimum moment magnitude (M) of 1.1 and 2.0, for each of the
top two performing classifier models.

Rank Light GBM Light GBM Random Forest Random Forest
(My =2.0) (M, =1.1) (My, = 2.0) (M, =1.1)

1 Depth to the top of Depth to the top of Distance of well from | Depth to the top of

basement basement Cordilleran thrust basement
belt

2 Minimum horizontal | Minimum horizontal | Depth to the top of Variation of local

stress magnitude stress magnitude basement Shmax from regional
orientation

3 Distance of well from | Variation of local Minimum horizontal | Minimum horizontal
Cordilleran thrust Shmax from regional | stress magnitude stress magnitude
belt orientation

4 Regional shear strain | Depth to the top of Depth to the top of Distance of well from

field the Montney the Montney Cordilleran thrust
belt
5 Standard deviation Distance of well from | Average bulk density | Depth to the top of
of pore pressure Cordilleran thrust of Montney at well the Montney
gradient belt location
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Figures 41 and 42 present the susceptibility maps of induced seismicity potential for event
magnitudes 2.0 and greater as generated from the Light GBM and Random Forest models,
respectively. Figure 43 provides a side-by-side comparison of the maps for both models against
the corresponding maps derived from the magnitude 1.1 cut-off dataset analyses.

As would be expected, increasing the cut-off magnitude to 2.0 reduces the extent and
probability magnitudes of seismic potential across both maps. Comparing the two Light GBM
susceptibility maps, similar hotspots are seen (compare Figure 43 a with b). These have similarly
high probabilities (up to 80-90% in hotspot locations), but the extent of the higher probability
areas surrounding them are smaller for the magnitude 2.0 cut-off map. Another key difference
is a new hotspot area that appears in the southwestern part of the Montney for the magnitude
2.0 cut-off map (circled in red in Figure 43b). The magnitude 1.1 cut-off map had previously
identified this area as having a low probability of seismic potential. However, the training of the
Light GBM model against the magnitude 2.0 cut-off dataset results in slightly different key
features being emphasized as important, for example distance from the Cordilleran thrust belt
and regional shear strain field. These then combine to indicate an additional area of high
seismic potential with probabilities of up to 70% of generating an induced seismicity event of
magnitude 2.0 or greater.

The Random Forest susceptibility maps likewise show that areas indicating a higher probability
of seismic potential are reduced in extent for the magnitude 2.0 cut-off map compared to the
magnitude 1.1 cut-off map (compare Figure 43 d with c). In addition, the probability
magnitudes for the hotspot locations are lower. The highest probabilities in the hot spot
locations for the magnitude 1.1 cut-off analysis were in the range of 80-100% (Figure 43c)
compared to those in the magnitude 2.0 cut-off analysis, which are in the range of 50-70%
(Figure 43d).

Overall, these results demonstrate the sensitivity of the induced seismicity susceptibility maps
generated to the machine learning algorithms used, as well as to the minimum event
magnitude cut-off threshold used. However, they also demonstrate the robustness of the map
predictions as both sets of models identify similar hotspots with similar probability magnitude
distribution trends; the differences seen are generally small and localized relative to the
accuracy and precision that can be expected from a model and its output. The results point to
the value of using two or three top performing models in parallel, as well as best practices in
which the different induced seismicity susceptibility maps generated are considered together to
inform decision making. The performance of these models and map products need to be
periodically updated and tested as hydraulic fracturing operations in the Montney continue.

58| Page



Light GBM Model |

57°0'0"N

56°0"0"N-

55°0"0"N-

B o |

T T T T
123°0'0"W 122°0'0"W 121°0'0"W 120°0'0"W

Figure 41 — Induced seismicity susceptibility map for the Montney region for events with a minimum
magnitude of 2.0 based on results from the Light GBM machine learning model. Included are outlines of
the North Peace Ground Motion Monitoring Area (NPGMMA) to the northwest, and Kiskatinaw Seismic
Monitoring and Mitigation Area (KSMMA) to the southeast.
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Figure 42 — Induced seismicity susceptibility map for the Montney region for events with a minimum
magnitude of 2.0 based on results from the Random Forest machine learning model. Included are
outlines of the North Peace Ground Motion Monitoring Area (NPGMMA) to the northwest, and
Kiskatinaw Seismic Monitoring and Mitigation Area (KSMMA) to the southeast.
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Figure 43 — Comparison of induced seismicity susceptibility maps based on results from the Light GBM
model for a minimum magnitude cut-off of: a) 1.1 and b) 2.0, and from the Random Forest model for a
minimum magnitude cut-off of: c) 1.1 and d) 2.0.
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6.3. Use and Limitations

Below are several key points regarding the use of the induced seismicity susceptibility maps
generated, including considerations that affect their accuracy and/or confidence in their use.

The generated maps are raster maps with a 2.5 km grid spacing covering the Montney
region. Each raster pixel reports the calculated spatial probability of a well at that
location triggering an induced seismicity event greater than the cut-off magnitude (1.1
or 2.0, as specified). This information can be used towards planning, hazard and risk
analyses, and future decision making, as pixels with higher probabilities indicate areas
with a higher likelihood of triggering induced seismicity.

The resolution of the generated raster maps (i.e., 2.5 km) should be take into
consideration when using these maps. Any interpolation of the results at a smaller
resolution is beyond the accuracy of this work and should not be relied on.

The induced seismicity susceptibility maps are intended to serve as a screening tool and
should not be relied upon in the absence of other information for absolute prediction.
Indications of relatively lower or higher susceptibility should be used as one piece of
information to help support judgement and decision making as to the level of effort
needed for further work, and not as the sole basis for a decision about activities.

The influence of other related activities (e.g., wastewater injection) have not been
considered in developing the induced seismicity susceptibility maps. The effects of such
activities would require further site-specific analysis.

The generated maps are only as reliable as the data used. As more data with higher
quality is collected over time, these maps should be updated.
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7. Severity Analysis

Building on the previous classification-based susceptibility analyses, the question of induced
seismicity severity potential was further investigated employing machine learning regression
analysis techniques (e.g., Figure 4). The workflow used, relative to that for the susceptibility
analysis, is provided in Figure 7. Several machine learning models were trained, tested and their
performances evaluated with respect to estimating the maximum magnitude of the induced
seismicity events associated with each hydraulic fracturing well. For this analysis, the Induced
Seismicity Severity Dataset was used (see Section 2.4). The Mean Square Error (MSE) and Mean
Absolute Percent Error (MAPE) were used as the key metrics for evaluating model performance
and hyperparameter tuning of the regression models.

7.1. Model Training, Tuning and Comparison Testing

Table 8 reports the cross validation results for the maximum magnitude regression models after
training and tuning. Between the eight regression models tested, the Light GBM and Random
Forest models were seen to perform the best based on having the lowest MSE and MAPE
validation scores, while having high R? values. The MSE and MAPE are calculated from the
difference between the actual and predicted values, and therefore lower values indicate a
better model performance. Table 8 shows that the XGBoost model also has low MAE and MAPE
values, but the zero values during training and r? of 1.000 warns that the model is overfitting.

Table 8 — Cross validation results of the maximum magnitude regression models. Values given are the
average over 50-fold iterations; values in parentheses are standard deviations.

Model Training Validation Training Validation Training Validation

MSE MSE r? r? MAPE MAPE

Dummy Regressor 0.187 0.188 0.000 -0.140 0.168 0.168
(+/-0.002) | (+/-0.091) | (+/-0.000) | (+/-0.207) | (+/-0.001) | (+/-0.035)

Linear Regression 0.184 0.203 0.016 -0.330 0.165 0.173
(+/-0.093) | (+/-0.130) | (+/-0.494) | (+/-0.828) | (+/-0.034) | (+/-0.053)

Decision Tree 0.069 0.122 0.630 0.188 0.094 0.118
(+/-0.005) | (+/-0.099) | (+/-0.029) | (+/-0.713) | (+/-0.003) | (+/-0.046)

Random Forest 0.013 0.090 0.933 0.445 0.037 0.099
(+/-0.001) | (+/-0.061) | (+/-0.003) | (+/-0.345) | (+/-0.001) | (+/-0.035)

SVR 0.008 0.155 0.955 0.068 0.045 0.150
(+/-0.000) | (+/-0.087) | (+/-0.000) | (+/-0.282) | (+/-0.000) | (+/-0.037)

KNN 0.103 0.146 0.450 0.100 0.116 0.140
(+/-0.001) | (+/-0.081) | (+/-0.007) | (+/-0.383) | (+/-0.001) | (+/-0.039)

XGBoost 0.000 0.134 1.000 0.124 0.000 0.112
(+/-0.000) | (+/-0.120) | (+/-0.000) | (+/-0.813) | (+/-0.000) | (+/-0.053)

Light GBM 0.002 0.087 0.988 0.458 0.013 0.097
(+/-0.000) | (+/-0.078) | (+/-0.001) | (+/-0.450) | (+/-0.001) | (+/-0.038)
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Based on the cross-validation results, the performance of the Light GBM and Random Forest
models were next tested against the test data split, which represents unseen data (e.g., Figure
5). Table 9 reports the test results and indicates that both models performed similarly. The test
scores were also similar to the cross-validation scores for these models (Table 8), and thus both
were selected for detailed interpretation.

Table 9 — Test results comparing the top two performing regression models against the unseen test data.

Model Test MSE Test r? Test MAPE
Light GBM 0.11 0.53 0.118
Random Forest 0.18 0.25 0.137

7.2. Model Interpretation

Feature Importance Plots

The features considered in the maximum magnitude regression analysis included all geological
and operational features, similar to the feature importance classification analysis presented in
Section 5.1. The key difference is that the Induced Seismicity Severity Dataset used for the
regression analysis (the Well Features Dataset was used previously), only includes the wells that
were classified as being seismogenic. For each of these, the maximum magnitude of the
associated induced seismicity events is ascribed (Section 2.4). Figures 44 and 45 show the
resulting feature importance plots with respect to maximum induced seismicity event
magnitude for the Light GBM and Random Forest regression algorithms, respectively. Table 10
reports the top five important features for each of these models.

Both models show agreement that the two most important features with respect to predicting
maximum event magnitude are the b-value of induced seismicity events (within 100 km of the
well) and the standard deviation of the pore pressure gradient. The relationship between b-
value and induced seismicity magnitude has been investigated by Amini and Eberhardt (2019),
who showed that the tectonic stress regime influences the magnitude distribution of induced
seismicity events and therefore the b-value. Interestingly, the distance of a well from the
Cordilleran thrust belt ranks in the top five important features for both models, as do other
stress regime indicators like azimuth difference between the local and regional maximum
horizontal stress (for the Light GBM regression model) and minimum horizontal stress (for the
Random Forest regression model). The importance of pore pressure gradient is possibly related
to pore pressure compartmentalization observed in the Montney Formation (e.g., Fox &
Watson, 2019). However, its influence on event magnitude still needs to be investigated. With
respect to operational features, total volume is no longer the most important feature as was
the case in the classification analysis, and instead the number of active days for completions
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and maximum injection pressure were seen to be the most important operational features with
respect to induced seismicity severity.

Light GBM Regressor Feature Importance

b_value
ppgrad_SD
Dist_CTB
Active_Days
Shmax_variation
Mon_Thickness
BHCPv
Max_Inj_P

Ra

Dist_Faults
Basement_Top
Bulk_Density
Montney-Top
Shmin
Avg_Volume/Stage
Avg_\

PP_grad
Awg_Frac_Spacing
Total_Prop
Total_Volume
Max_Pb
Avg_Prop/Meter
Avg_Inj_Rate
Shear_Strain
‘WellDensity-10km
Max_|SIP
Dist_MidMaon
Avg_Prop/Stage
™D

_Stages
Comp_Length
Dist_Basement
Dist_TopMon
Well_Shmax_Azdiff
WellDensity-3km
Seismo_index
WellDensity-1km

| I-Ili III I“““‘||

=]
Y]

0.4 0.6 08 1.0
Normalized Feature Importance

=]

Figure 44 — Feature importance results for the Light GBM regression model with respect to maximum
induced seismicity event magnitude.

Random Forest Regressor Feature Importance
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Figure 45 — Feature importance results for the Random Forest regression model with respect to
maximum induced seismicity event magnitude.
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Table 10 — Top five ranked features with respect to importance to maximum induced seismicity event
magnitude, for each of the top performing regression models.

Rank | Light GBM Random Forest
1 b-value of events (within 100 | b-value of events (within 100
km of well) km of well)
2 Standard deviation of pore Standard deviation of pore
pressure gradient pressure gradient
3 Distance of well from Thickness of Montney
Cordilleran thrust belt formation

4 Number of active completion | Distance of well from

days Cordilleran thrust belt
5 Variation of local Shmax Minimum horizontal stress
from regional orientation magnitude

SHAP Summary Plots

Figures 46 and 47 present the summary plots from the SHAP analysis for the two top
performing regression models. Based on these plots, we can see that the b-value ranks highest
in terms of importance and has a positive correlation with maximum event magnitude. The
higher values in this case correspond to a strike-slip stress regime, suggesting that larger
magnitude induced seismicity events correlate more strongly with strike-slip stress conditions.
(Note that the lower values for this feature correspond with a reverse fault stress regime, and
these have less impact on the regression model predictions of maximum event magnitude).
Similarly, the azimuth difference between the local and regional maximum horizontal stress
orientation for the Light GBM regression model is ranked as important and shows a positive
correlation. This does not necessarily mean that higher variations correlate directly with higher
magnitude events since the maximum range of variation in the dataset is only 10 degrees.
However, together, both features indicate the importance of the stress regime and that
depending on the relative fault orientation, some faults become more critically stressed than
others. This finding is explored in more detail in the next section (Section 8).

Another important feature ranked highly by both regression models is the standard deviation of
pore pressure gradient. This is seen to have a positive correlation, although the results are
somewhat more ambiguous for the Light GBM regression model, which shows high values for
this feature having both positive and negative impacts on the model’s output. This response
might be an indication of the dependency of fault slip (and large versus small magnitude
events) on the effective stress state and its heterogeneity, in combination with its sensitivity to
the fault orientation (i.e., how critically stressed the fault might be or not). A similar bi-modal
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response is seen for the distance of the well from the Cordilleran thrust belt; smaller values
have both a negative and positive impact on the model predictions of severity. Again, this is
specifically with respect to event magnitudes. For wells that are closer to the Cordilleran thrust
belt, the results indicate a higher induced seismicity maximum magnitude, perhaps related to

more faults being present within the deformation limits of the Cordillera. However, this feature
does not specify the size or orientation of the faults in proximity to the well, and therefore both

small and large magnitude events can be expected depending on the orientation of the fault(s)
the injected fluids are interacting with.
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Figure 46 — SHAP summary plot for the Light GBM regression model with respect maximum induced
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Figure 47 — SHAP summary plot for the Random Forest regression model with respect maximum induced
seismicity event magnitude.
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8. Mechanistic Analysis

To support the machine learning results, a series of numerical simulations were performed to
demonstrate their value in investigating the mechanistic cause and effect relationships behind
the patterns and correlations uncovered. As an investigative tool, numerical modelling allows
the effects of different parameters to be tested for their sensitivities and interactions with one
another. The Itasca Consulting Group’s 3-D hydraulic fracture simulator XSite™ (version 3.0)
was used for this purpose.

The models generated are conceptual, but were guided and constrained by reported reservoir
characteristics for the Montney in British Columbia. They are designed to be generic to study
the mechanistic cause of induced seismicity due to fluid injection and are not meant to be
predictive for any specific site location or set of conditions. By adopting a simpler
representation involving a single planar fault, focus was placed on capturing the physics of fluid
pressure perturbation and stress transfer as triggering mechanismes.

8.1. Numerical Method Overview

XSite™ is a 3-D hydraulic fracturing numerical simulation program that employs a fully-coupled
hydro-mechanical bonded-lattice modelling method (Damjanac at al.,, 2016). This numerical
approach is based on the Synthetic Rock Mass (SRM) concept by Pierce et al. (2007). The SRM
has been developed as a more realistic means to model the mechanical behavior of a fractured
rock mass, and is comprised of two components: i) the bonded particle model (BPM), which
simulates the deformation and fracturing of intact rock (Potyondy & Cundall, 2004); and ii) the
smooth joint model (SJM), which simulates slip and opening behavior along discontinuities
(Damjanac et al., 2020). The SRM and its components are shown in Figure 48.

The 3-D lattice model utilizes bonded particle (Potyondy & Cundall, 2004) and discrete element
(Cundall & Strack, 1979) principles, but simplifies these to gain computational efficiencies to
deliver faster calculation speeds. The lattice is made up of a quasi-random 3-D assembly of nodes
with mass connected by two sets of springs: one representing the shear and the other the normal
contact stiffness (Figure 49). These add up to represent the elasticity of the rock mass.
Microcracks are simulated in the model through the failure of springs; these cluster to represent
the growth of larger 3-D nonplanar fractures. A fluid element is assigned to each newly generated
microcrack and a fluid channel will connect adjacent fluid elements. This allows non-steady fluid
flow and pressure to be implemented in both the pre-defined joints, for example that specified
though a discrete fracture network (DFN), and any stress-induced fractures generated during
time-stepping. The fracture fluid flow is fully coupled (i.e., two-way interaction) with mechanical
deformation. The pore pressures in the joints act to load the surrounding solid model, whereas
the deformation of the solid model causes pore pressure and aperture (i.e., permeability)
changes in the discontinuities.
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Figure 48 — Synthetic rock mass (SRM) method, which combines a bonded particle model (BPM) to
simulate intact rock behavior, including the generation of stress or fluid pressure induced brittle
fracturing, and a smooth joint model (SIM) to simulate discontinuity behaviour, including shear slip.
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Figure 49 — Correlation between the 3-D lattice model and corresponding pipe network formed by the
generation of microcracks (after Damjanac et al., 2016).
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8.2. Model Setup and Inputs

The XSite™ model was setup to consider the general geology and typical reservoir depths present
in the Montney region. Consideration was also given to studies suggesting that some of the
largest induced seismicity events recorded for the Montney have occurred in the basement (e.g.,
Pefia Castro et al., 2020). At the same time, it was noted that the vertical component of source
location for these events suffers from poor detection resolution as well as use of a simple seismic
velocity model, with updated seismic velocity models showing one of these events (the My, 4.2
event on November 30, 2018) as occurring at the reservoir depth (personal communication,
BCOGC). The model was thus developed to be adaptable. For this, a 3-D block domain was
generated with dimensions of 1.6 km x 1.6 km x 1.5 km (in the X, Y and Z directions, respectively).
This model dimension permits the accommodation of a circular fault with a radius of 650 m
(Figure 50). By applying different vertical stresses to the top of the model, different fault depths
could be modelled.

Depth = 1.9 km——

15km O

No-flow at all boundaries

Figure 50 — Schematic of the base XSite™ model geometry and boundary conditions. The directions of
the principal stresses are shown (note that each stress is parallel to the Cartesian axes of the model as
indicated by the matching arrow and axes colours). The geometry, initial aperture (a), and frictional
strength properties of the central circular fault are shown. The far-field displacement boundary
conditions are fixed at the top and bottom faces, and free to move in the Z-direction along the side faces.
All the boundaries are impermeable.
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The fault orientation (i.e., dip and dip direction) was not fixed relative to a specific scenario but
was varied in relation to the applied stress conditions as part of a parametric analysis. This was
in recognition of the complex tectonic history of NEBC, which has contributed to the
development of normal, strike-slip and reverse faults (i.e., faults with different dip angles and dip
directions). For example, the main tectonic structure in the Montney region is the Fort St. John
Graben (FSJG), where a significant number of the large magnitude events have been observed
(Mahani et al., 2017). Although grabens are associated with extensional stress regimes and
therefore normal faulting, the development of the FSJG was coupled with strike-slip motion and
related compressional and rotational movement (Barclay et al.,, 1990). Evidence of fault
orientations based on seismic reflection data is generally not available in the public domain, while
the mapping of sub-vertical faults in reflection seismic surveys is challenging. Typically, these
unmapped faults are more seismogenically problematic (personal communication with BCOGC).

With respect to present-day tectonics, stress inversions of induced seismicity focal mechanisms
suggest that both reverse and strike-slip faulting stress regimes are present in the Montney
(Mahani et al., 2017, 2019; Eaton et al., 2019; Pefia Castro et al., 2020). For example, Eaton et al.
(2019) analyzed the focal mechanisms of the 2018/11/30 earthquake sequence near Fort St.
John, which include a My 4.6 event. Figure 51 shows the epicenters of events with M > 1.5 (both
moment magnitude, M,,, and local magnitude, M, ), as well as the focal mechanism diagrams
(beach balls) for the 12 largest events. The beach balls are coloured according to distinct clusters
of events (i.e., events that occurred spatio-temporally close together). The primary event is
displayed in green and represents a predominantly reverse fault mechanism, interpreted as a
reverse reactivation of a normal fault that forms the southern boundary of the FSJG. Other events
exhibit a diverse range of focal mechanisms, including strike-slip and low-angle thrust faulting.
This diversity of induced seismicity source type further supports the presence of a complex fault
system.

It should also be noted that for induced seismicity, the focal mechanism is not necessarily the
same as the far-field stress regime; the focal mechanism is representative of the near-field
stresses acting locally on the fault and the corresponding slip direction. As will be discussed later
with the simulation results, this might be different from the far-field stress regime depending on
the orientation of the fault experiencing the pressure perturbation from the fluid injection.
Accordingly, reference to the modelled stress scenarios here differentiates between the far-field
stress regime applied as a boundary condition to the model (simulating the tectonic condition)
and the transformed stresses acting locally on the fault which relate to the focal mechanism when
a fault slip event is triggered.
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Figure 51 — Map of the 2018/11/30 earthquake sequence near Fort St. John, BC. The magenta lines
represent the horizontal wells and laterals. The gray dots show the events recorded by the local
seismograph array (red triangles). The beach ball diagrams show the focal mechanisms scaled by
magnitude and coloured by event clusters (i.e., events that occurred spatiotemporally close together).
Location of the southern bounding fault of the Fort St. John Graben (FSJG) is also shown in the map. The
map grid spacing is 1.6 x 1.6 km. After Eaton et al. (2019).

Accordingly, the XSite™ model was set up to simulate both strike-slip and reverse fault far-field
stress regimes as part of the parametric analyses performed. The estimation of the in-situ
stresses was further guided by published well logging analyses (e.g., Rogers & Patrick, 2014;
Rogers et al., 2015; Fox et al., 2019). Figure 52 shows the stress and fluid pressure profiles
implemented as a function of depth. The three principal stresses are orthogonal. The vertical
stress, fluid pressure, and the maximum horizontal stress gradients were kept the same for both
stress regime models; only the minimum horizontal stress gradient was changed. By using the
same vertical stress and fluid pressure gradients, the injection depths for both models remain
the same, thus allowing results to be directly compared. The magnitude of the vertical stresses
was easily determined using density log data together with the average densities for the overlying
formations. The vertical stress was the minimum principal stress for the reverse far-field stress
regime scenario (Sv>Sh>Sv). The magnitude and orientation of the minimum horizontal stress was
determined primarily from minifrac test results. The minimum horizontal stress was the
minimum principal stress for the strike-slip far-field stress regime scenario (Sy>Sy>Sh). The
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maximum horizontal stress was determined by finding a value that would cause stress-induced
borehole failure (or lack thereof) that matches observed failure in borehole image log data (e.g.,
FMI, CBIL, etc.). The orientation of the observed failure provides the azimuth of Sy (see Zoback,
2007; Fox et al., 2019). The gradients for each stress component are provided in Table 11.
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Figure 52 — In-situ stress and pore pressure profiles modelled, for: a) strike-slip, and b) reverse fault far-
field stress regimes applied as model boundary conditions. Note that the injection depth (vertical stress)
is the same for both scenarios.
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Table 11 — XSite™ model inputs, and sources, for fluid injection and induced seismicity simulation,
including in-situ stress conditions and rock mass and fault properties.

Property

Description

Model geometry
Fault radius, initial aperture
Fault strength properties

Injection rate at point of intersection with fault *

S, (Z-axis)

Stmax(Y-axis)

Shmin (X-axis)

Pore pressure gradient
Depth at top of the model

Formation density

Elastic properties

Matrix internal friction angle
Unconfined Compression Strength (UCS)

Fracture toughness

Tensile strength

Matrix permeability and porosity

1.6 km X 1.6 km X 1.5 km
r=650m,a=0.0001m
u=tan(27) '} c=9.5MPa3 T = 2.5 MPa?

5

Qinj = 0.2 m3/s

Strike-slip: 48 MPa + 25 MPa/km,
Reverse: 48 MPa + 25 MPa/km *®

Strike-slip: 63 MPa + 33 MPa/km,

Reverse: 63 MPa + 33 MPa/km ®

Strike-slip: 38 MPa + 20 MPa/km,
Reverse: 53 MPa + 28 MPa/km *®

15 MPa/km ®
1.9 km
2600 kg/m3 +27
E =32 GPa,v = 0.22 ¥%7
470 1,7
120 MPa’
1.25 MPa. m%> 8°
15 MPa®
k = 50 nD M1°, ) = 50 1011

MclLellan (2016’; Rogers & Patrick (2014).
2 Vaisblat et al. (2019).

3 Determined based on sensitivity analysis. Note that the cohesion adds more brittle behavior to the fault and
thus a more sudden release of energy. This value is selected to simulate a conservative scenario.

4 The model is designed to examine the fluid injection rates, pressures and volumes as experienced by the fault.
The implementation of the fluid injection represents a conservative scenario where the borehole or the
hydraulic fracture intersects with the DFN connected with the fault (see Figure 53).

5> Zoback & Kohli (2019).

6 Fox et al. (2019); the gradients implemented simulate injection into an over-pressured reservoir. This represents
a conservative scenario. The vertical stress gradient is calculated from the average density of the formations

from the ground surface to the reservoir depth.
7 Trican Geological Solutions (2013).
8 Chen & Wong (2018).
° Abdelaziz et al. (2019).
10 Javaheri et al. (2017).
1 vishkai & Gates (2019).
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Table 11 also lists the rock mass and fault properties used for model input. These were compiled
from reports on laboratory testing results for Montney rock specimens retrieved from reservoir
depths (Trican Geological Solutions report, 2013; McLellan, 2016; Vaisblat et al., 2019). It was
assumed that the rock mass matrix is homogeneous and isotropic, and that the fault properties
were uniform along the planar fault. A Coulomb shear slip criterion was used to model the fault
strength. It is recognized that fault properties are more likely to be strongly heterogeneous and
encompass damage zones adjacent to the fault; this consideration is the topic of planned future
research, but was partly accounted for here by assigning cohesive and tensile strength values to
the fault to account for asperities, non-planarity and intact rock bridges.

The injected fluid was assumed to be incompressible relative to the rock mass compressibility
(Damjanac et al., 2020). This assumption simplifies the interpretation of the simulation results.
As shown in Figure 50, the initial fluid pressures in the matrix and fault were set to have the same
gradient of 15 MPa/km. The matrix is otherwise assumed to be impermeable, reflective of the
ultra-low permeability rocks present in the Montney. All model boundaries are likewise treated
as impermeable (i.e., no flow is permitted in or out of the modelled domain). Fluid injection was
simulated directly into the fault to gain computational advantages in simulation computing times.
This simplified assumption is representative of a scenario where either the borehole, hydraulic
fracture or a discrete fracture network (DFN) intersects the fault and transmits fluid pressure
radially into the more permeable fault (Figure 53). As the injection continues, the zone of
interaction (or the injection pressure front) transmitted to the fault gets larger. The injection flow
rate used was 0.2 m3/s (i.e., ~75.5 bbl/min), which represents an average value for well
stimulations lasting two hours (Zoback & Kohli, 2019).
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Figure 53 — Fluid injection method used for the XSite™ modelling. In this scenario, a fracture network
intersects with a fault, transmitting fluid pressure as a cone-shaped pressure front that radiates
outwards from the injection point and intersects and perturbs an area of the fault, which increases from
t: (white dotted circle) to t, (solid red circle) with increasing injection time.
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8.3. Procedure for Calculating Induced Seismicity Moment Magnitude

Figure 54 represents the relationships between earthquake moment magnitude (moment
release), rupture radius, stress drop and shear displacement, derived using procedures reported
in Stein and Wysession (2003) and Scholz (2019).
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Figure 54 — Relationships between different scaling parameters for earthquake moment magnitude
derived using procedures reported in Stein and Wysession (2003) and Scholz (2019). A shear modulus of
30 GPa was assumed for the rock mass hosting the fault. Larger earthquake magnitudes result from
larger fault areas (x-axis) and slip displacements (dashed lines), as well as stress drops (solid lines).

From Figure 54, depending on the displacement magnitude and stress drop, the modelled fault
size in this case (650 m radius) is capable of producing earthquakes of Mw = 3.0. The relationship
between the shear displacement in an earthquake, its source dimension, and its seismic moment
release is closely tied to the magnitude of the stress released by the earthquake, or the stress
drop (AT). The earthquake releases the strain energy stored in the fault due to the applied far-
field stress. The change in the strain energy (A&gpeqr) for an earthquake whose rupture radius is
R and its average slip dimension is D, could be expressed as:

(1)

A<c-'shear ~

x| ol

Hence the stress drop averaged over the fault would be:
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GD
At = ? (2)

where, G is the shear modulus. We can calculate the average stress drop over a circular slip area
using the moment release (M,)) as following:

AT = —=2 (3)
where M, = GDmR? (Scholz, 2019).

From this relationship, we are able to calculate the moment magnitude for a modelled fault slip
event in XSite™, as both the average stress drop and shear slip magnitude distribution along the
fault. The strain energy released can also be calculated as W = At X mR? X D (i.e., work equals
force times distance).

8.4. Simulation Results

8.4.1. Importance of Depth to Top of Basement

The first set of model results investigated the influence of depth to the top of the basement at
the well location on induced seismicity susceptibility. This feature was repeatedly ranked as the
most important by the machine learning classification models for the susceptibility analysis. The
XSite™ model in this case was only used in a limited sense as the full model presented in Section
8.2 is designed more specifically to model induced seismicity event severity (i.e., maximum
moment magnitude). Note that the depth to the basement top did not rank in the top five
important features in the machine learning regression models for the severity analysis.

According to the machine learning classification model results, the distance to the top of the
basement showed a negative correlation with increasing likelihood of a well being seismogenic
(e.g., see Figures 32 and 33). In other words, wells located where the depth to the top of the
basement is shallower are more likely to be seismogenic. This correlation does not specify what
the corresponding injection depth is, but it can be postulated that as the distance between the
injection point and the top of the basement increases, it is less likely that the injection pressure
front interacts with any basement faults. At the same time, there is the added consideration that
as the basement depth increases, deeper faults will be under higher stresses and therefore
potentially in a more critical state that is susceptible for generating seismicity.

To test this interaction, the modelled simulation made use of a realistic discrete fracture network
(DFN) realization developed for the Montney formation (courtesy of Dr. Steve Rogers, Golder).
The in-situ stress and pore pressure gradients initialized in the models were the same as the
strike-slip stress regime provided in Figure 52a. However, to simulate a low and high stress
environments, the top of the model was selected to be at a depth of 1.9 and 2.5 km, respectively.
These depths were selected in accordance with the Well Features Dataset compiled for the
machine learning analyses. In both scenarios, the depth of the injection point relative to the
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depth of the basement (and any basement faults) is the same. This allows the influence of the
stress magnitude (as a proxy for depth) to be singled out in the models.

The model results are presented in Figure 55. These show the extent of the fluid pressure invaded
zone after 30 minutes of injection in the form of the modelled shear-slip distributions along the
individual fractures making up the DFN. These indicate that for the deeper basement and
injection scenario (Figure 55b), the corresponding higher stresses act to limit the extent of the
invaded zone transmitted outwards from the injection point and hydraulic fracture. Conversely,
the results for the lower basement depth (Figure 55a) show that the lower stress environment
results in a significantly larger invaded zone (i.e., larger volume of rock mass subjected to
increased pore pressures). Thus, as the distance to the top of the basement becomes smaller,
fluid injection results in a larger volume of elevated pore pressures, which in turn results in an
increased likelihood of interacting with a critically stressed fault in the basement to trigger an

induced seismicity event.
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Figure 55 — Shear displacements generated along faults within a discrete fracture network at the end of
30 minutes of injection as a rate of 0.2 m>/s for two different depth scenarios: a) injecting at the depth of
2.3 km (top of the model is at 1.9 km depth), b) injection at the depth of 2.9 km (top of the model is at
2.5 km depth). The strike-slip far-field stress regime boundary condition and pore pressure profiles are
shown in Figure 52a.
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8.4.2. Influence of Formation Stiffness

Modelled Parameter Range

The next series of XSite™ models investigated the influence of elastic stiffness for the rock mass
hosting a critically stressed fault. Rock mass stiffness is known to be a key influencing factor in
fault-slip rockburst hazards encountered in deep mining. Figure 56 reports the range of
laboratory-measured Young’s Modulus (E) values for cores obtained from the Montney
formation at reservoir depths between 2.3 and 2.6 km, as reported by Trican Geological Solutions
(2013). These show values ranging from 16 to 50 GPa. McKean and Priest (2019) report an even
higher range (42 to 72 GPa), albeit for samples obtained from Montney surface outcrops. To
ensure a thorough analysis of the parameter space, we selected five different Young’s modulus
values covering the reported ranges. As previously noted, the rock properties were assumed to
be homogeneous and isotropic in each model representing a different stiffness of the rock mass
domain.
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Figure 56 — Laboratory measured Young's modulus (E) values for rock cores retrieved from the Montney
formation from the same well, as reported by Trican Geological Solutions (2013). The coloured circles
and triangles correspond with values for samples tested vertically and horizontally, respectively, relative
to the core axis. The colours represent three different zones designated as having different rock facies.
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As the parameter of interest was the formation stiffness, the model geometry used assumed the
same fault orientation for each model scenario (dip direction of 45°, clockwise from the
maximum horizontal stress, and dip angle of 80°). Modelling for this fault orientation considered
both the strike-slip and revere fault stress regimes. Once the in-situ stresses and pore pressures
are initialized and fluid injection begins, the fluid pressures acting on the fault begin to increase.
As the fluid pressure increases, the effective shear strength of the fault decreases until the shear
slip criterion is satisfied (i.e., T — [(g, — P;) tan(27°) + 9.5)] = 0) and shear slip occurs.

It was observed that as the rock mass stiffness increases, fluid pressure in the fault builds up
more as there is more resistance to rock mass deformation (i.e., &, =% , Where g, is the

volumetric strain and K is the bulk modulus), which restricts the ability for the fault aperture to
increase. This results in a higher fluid pressure gradient (APf) at the fault, resulting in a larger
perturbed area in a shorter injection time (q «< APy, and q.At;,; = AV = anmR?, where Aty is
the injection duration). At the same time, the stiffer rock mass adjacent to the fault provides
more confinement (i.e., higher normal stresses), and therefore resistance to slip, resulting in
more elastic strain energy being stored. Figure 57 illustrates the increasing amount of strain
energy stored for a given amount of shear strain, €,, as a function of increasing rock mass shear
stiffness, G (note that the stored elastic strain energy is proportional to the area under the shear
stress versus shear strain plot for the rock). Thus, for the same slip area (mR?) and displacement

(D), it is expected that stiffer rock will result in a larger moment release (recall that M, =
GDmR?).

4 G=64 GPa

G=32 GPa

G=24 GPa

G=16 GPa

Eshear

Figure 57 — Schematic illustration of the stored elastic strain energy for different rock stiffnesses. The
stored elastic strain energy is proportional to the area under the stress-strain plot for the rock. Thus, as
rock shear stiffness, G, increases, so does the strain energy stored in the rock mass for the same amount
of deformation, .
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Reverse Fault Far-Field Stress Regime

Figure 58 plots the moment release as a function of injection time for the reverse fault far-field
stress regime boundary condition. The solid lines are for the base-case maximum horizontal
stress gradient (i.e., 33 MPa/km), as described for Figure 52b, whereas the dashed lines are for a
higher horizontal stress gradient of 38 MPa/km. The latter represents an adjusted gradient that
conforms to the observed horizontal stress ratio (i.e., 1.1 < Su/Sh < 1.4; see Rogers & Patrick,
2014), but also results in a differential stress (i.e., S1-S3) that is the same as for the strike-slip
stress regime scenario (Figure 52a). This facilitates comparison to results for the strike-slip stress
regime scenario presented later. Another important consideration with respect to interpreting
this plot, is that XSite™ is a quasi-static program, while fault slip rupture events are dynamic. To
address this limitation, the maximum moment magnitude for a simulation can be calculated by
summing the displacement events over the total fluid injection time, thus treating these as a
cluster of cascading events resulting in a single moment magnitude, even though the fault slip
response in the model occurs over an extended injection time. Figure 58 shows the calculated
maximum moment magnitudes (My) with arrows pointing to the end of the injection time.
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Figure 58 — Moment release with fluid injection for models with different formation stiffnesses. The
modelled scenario is for a fault with a dip of 80° and dip direction of 45° relative to a reverse fault far-
field stress regime, assuming either a base-case (solid lines) or maximum (dashed lines) stress gradient.
Reported for each is the quasi-static maximum moment magnitude (M,,), as described in the text.
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As expected, the overall trend in Figure 58 indicates that higher rock mass stiffnesses result in
the potential for increased moment release, and thus, larger magnitude events. Comparing the
solid and dashed lines, the results also suggest that as the differential stress increases, the
moment release and maximum event magnitudes increase further. The latter can be explained
mechanistically by comparing the shear to normal stress ratio acting on the fault prior to
injection, which for the larger differential stress is slightly higher (i.e., t/on = 0.30 for the
maximum stress gradient compared to t/o, = 0.18 for the base-case stress gradient; Figure 59).
Consequently, a higher differential stress results in a more critically stressed fault with a larger
potential slip area, resulting in larger magnitude events. Viewed another way, a larger differential
stress results in a larger stress drop potential and therefore larger magnitude events. This is
shown in Figure 60, which compares the stress drop with fault slip for the larger differential stress
case (blue symbols) to that for the smaller differential stress case (green symbols).

a) Reverse fault far-field stress regime, base-case stress gradient scenario
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Figure 59 — 3-D Mohr-circle representations of the pre-injection effective normal and shear stress ratios
calculated for a depth of 2.4 km under a reverse fault far-field stress regime for the: a) base-case, and b)
maximum stress gradient scenarios. The red star indicates the stress state for a fault dipping at 80
degrees with a dip direction of 45° relative to the reverse fault far-field stresses. Also reported are the
corresponding effective normal stress (o), shear stress (z), /0, ratio, and displacement angle (i.e., the
clockwise angle of the fault rake from the strike).
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Figure 60 — Average stress drop (At) and shear displacement (D), and corresponding event magnitude,
derived from the simulation results as a function of formation stiffness. The modelled scenario is for a
fault dipping at 80° with dip direction 45° relative to a reverse fault far-field stress regime and base-case
(green symbols) and maximum (blue symbols) stress gradient, and strike-slip far-field stress regime (red
symbols). These are based on the maximum induced seismicity event after 120 minutes of fluid injection.

Strike-Slip Far-Field Stress Regime

Figure 60 also includes for comparison the average stress drops modelled for the strike-slip far-
field stress regime. These are seen to be significantly larger for the same rock mass stiffness than
the stress drops for the reverse fault far-field stress regime, including the maximum stress
gradient case. This is further shown in Figure 61, which plots the moment release as a function
of simulated injection time for each rock mass stiffness. Comparing Figure 61 to the same plot
for the reverse fault far-field stress boundary condition (Figure 58), the moment release and
event magnitudes are significantly higher for the strike-slip far-field stress boundary condition.
This relates to the t/0, ratio for the strike-slip far-field stress regime (t/o, = 0.56; see Figure 62)
being double that for the reverse fault far-field stress regime (compare to Figure 59). This shows
that the strike-slip far-field stress regime results in the fault, for the assumed fault orientation,
being more critically stressed, thus requiring a smaller fluid pressure perturbation to cause slip
over a larger area resulting in much larger events.
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Figure 61 — Moment release with fluid injection for models with different formation stiffnesses, for a
fault dipping at 80° with dip direction 45° relative to a strike-slip far-field stress regime. Reported for
each case is the quasi-static maximum moment magnitude (M,,), as described in the text. The dashed
arrows represent the sudden energy release and corresponding moment magnitude (M,, 4 ). Shown
below the main plot is one where the Moment Release scale bar is three orders of magnitude smaller to
show the details of the response for the lower rock stiffness cases.
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Figure 62 — 3-D Mohr-circle representation of the pre-injection effective normal and shear stress ratios
calculated for a depth of 2.4 km under a strike-slip far-field stress regime. The red star indicates the
stress state for a fault dipping at 80 degrees with a dip direction of 45° relative to the strike-slip far-field
stresses. Also reported are the corresponding effective normal stress (o), shear stress (z), z/c,’ ratio,
and displacement angle (i.e., the clockwise angle of the fault rake from the strike).

Figure 61 also shows an interesting deviation from the general trend of increasing moment
release with increasing rock mass stiffness for the intermediate case of E = 32 GPa. The results
for E = 32 GPa show a higher moment release than the stiffer E = 48 GPa case. Exploring this
further, it can also be seen that there is a difference related to the injection time when the first
sudden moment release (M,, 5,,4) is experienced. For the two higher stiffness cases (E = 64 and
48 GPa), this occurs after an injection time of 10 minutes, whereas for the intermediate case (E
= 32 GPa) it is 20 minutes, and for the two lower stiffness cases (E = 24 and 16 GPa) it is 30
minutes. As previously discussed, for the same fluid injection rate, the corresponding fluid
pressures acting on the fault increase as the stiffness of the surrounding rock mass increases.
Figure 63 shows the bottom-hole fluid pressures during the simulated injection (dashed lines),
which confirms these are higher for the two stiffer formations during the first ten minutes of
injection. What is seen in the models is that the critical pressure (Pr ;) to initiate a fault slip
event is reached with smaller injection volumes for stiffer rocks. At the same time, the smaller
injection volumes mean that the areal extent of the increased pore pressures acting on the fault
surface is also less. Therefore, two factors are at play in the XSite™ models with respect to the
magnitude of the induced seismicity event: i) how critically stressed the fault is in relation to the
in-situ stress condition, and the corresponding stress drop; and ii) the areal extent along the fault
experiencing the pore pressure increase resulting from the fluid injection. The latter introduces
a temporal component related to the injection rate.

Thisisillustrated in Figure 64. As the formation stiffness decreases, it takes a higher fluid pressure
acting on the fault to trigger a slip event, which requires a longer injection time and thus a larger
injection volume is able to radiate further into the fault resulting in a larger affected fault area.
Comparing E = 64 GPa to E = 48 GPa, the models are comparable in their sensitivity to the fluid
pressure and therefore they slip at similar times, with the E = 64 case generating a larger slip area
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(solid lines in Figure 64) and stress drop as the fault is more critically stressed. In contrast, the E
=24 and 16 GPa models are less critically stressed, and thus require longer injection times (larger
injection volumes) for pressures acting on the fault to be sufficient, relative to the corresponding
aerial extent of fault weakening, to trigger slip.
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Figure 63 — Bottom-hole injection pressures (dashed lines) and sheared slipped area on the fault (solid
lines) as a function of injection time, for different formations. The modelled scenario is for a fault with
dip direction = 45° and dip = 80°) in a strike-slip stress regime.
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Figure 64 — Schematic representation of the fluid injection front at the time of the first seismic moment
release, as observed in Figure 61. The colours of the injection pressure fronts above match those for the
rock stiffnesses in Figure 61. These show the area of fluid pressure acting on the fault increasing with
injection time. The corresponding stress drops are, from left to right, Aty = At, > Ats.
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It should be noted that although the area on the fault affected by the pore pressure increase is
larger for the lower rock mass stiffness cases, this does not translate into larger induced
seismicity event magnitudes. Although the influenced area is larger, the area satisfying the slip
condition (7 — [(an — Pf) tan(27°) + 9.5)] = 0) is smaller, resulting in a smaller seismic
moment.

Thus, for the E = 32 GPa case, an intermediate condition exists. Because the fault in this case is
less critically stressed compared to the higher stiffness cases, a longer injection time is possible
allowing more fault area to see an increase in fluid pressure (and decrease in effective stress).
At the same time, the rock is still stiff enough to store considerable strain energy. The
combined result is that when the induced seismicity event is triggered, there is more seismic
energy released suddenly for the E = 32 GPa case compared to the E = 48 GPa case.

Comparison to Machine Learning Results

The machine learning results for the regression modelling of induced seismicity severity indicate
that an increase in P-wave velocity (“BHCPv”) has a positive correlation with induced seismicity
event magnitude (see the SHAP plots in Figures 46 and 47). At the same time, there is a well
established positive correlation between seismic wave velocity and dynamic Young’s Modulus,
where higher P-wave velocities are associated with higher rock stiffnesses. Thus, the numerical
modelling results explain that the correlation between higher P-wave values and larger
magnitude induced seismicity events is through their association with higher stiffness rock.

The machine learning severity analyses also indicates that the number of active completion days
(“Active_Days”) is among the most important features and shows a negative correlation with
induced seismicity magnitude. In other words, a shorter activity period correlates with larger
events. This means that there is a higher likelihood of seeing a large magnitude event in the early
days of an injection operation. The numerical modelling results would suggest that these are
possibly wells that are in proximity to faults in higher stiffness rock in a strike-slip far-field stress
regime (see Figure 61). Although the XSite™ modelled scenario includes numerous
simplifications and generalizations, it is interesting to note that the average formation stiffness
for the Montney is approximately 32 GPa (Figure 56), and that the basement rocks would be even
stiffer. Together, the machine learning and numerical modelling results suggest that if operating
in a strike-slip far-field stress regime in stiffer rocks and there are fewer early events of My, > 1 or
2 than expected, that this might be a sign that strain energy is accumulating towards a large My,
>4 event. Similarly, in the context of a Traffic Light Protocol (e.g., Walters et al., 2015) and seismic
hazard, the detection of a My, 2 event might be more concerning when the formation targeted
by the injection, or adjacent to it, is stiffer (e.g., E > 32 GPa). It is acknowledged that these results
assume a good hydraulic communication between the injection wells and the fault causing
observation of early seismicity (i.e., causing a strong correlation between injection and the
observation of induced seismicity). It is also noted that the results do not consider activity after
shut-in and large induced seismicity events are possible after well shut-in (e.g., Haring et al.,
2008).
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8.4.3. Influence of Fault Orientation

Modelled Parameter Range

Given the complex tectonic history of NEBC, the development and presence of faults with
different orientations can be expected. Similarly, their orientation relative to the present-day far-
field stress regime, or any localized stress heterogeneity, is also likely varied. To investigate this
further, the XSite™ model was used to examine the seismogenic response relative to different
fault orientations for the reverse fault and strike-slip far-field stress boundary conditions.

For the reverse fault far-field stress condition (Figure 52b), Andersonian faulting theory
(Anderson, 1951) suggests that when Sy > S > Sy, gently dipping faults (~30°) with a dip direction
subparallel to Sy will be the most likely to activate. Based on this, the XSite™ model was run
assuming a fault dip angle of 30° and varying the dip direction from 0° (parallel to Su) to 90°
(parallel to Sy) in 15° increments. This analysis was then repeated for a steeply dipping fault (80°)
to consider a fault with an orientation that is not optimally aligned with the Andersonian reverse
fault stress assumption.

For the strike-slip far-field stress condition (Figure 52a), Andersonian faulting theory predicts that
when Sy > Sy > S, faults that are subvertical (~80-90°) and with a dip direction of 60° from Sy are
the most critical. Accordingly, a model series was run with a fault dip angle of 80° and varying the
dip direction from 0° (parallel to Su) to 90° (parallel to Sy) in 15° increments. This follows the same
orientations as modelled for the reverse fault far-field stress condition to aid comparison. A
second set of models was run with a dip direction that is slightly outside the optimum range at
45° to Sh.

Reverse Fault Far-Field Stress Regime

Figure 65a shows the results for a fault dipping at 30° in a reverse fault far-field stress regime
with varying dip orientation. As predicted by Andersonian fault mechanics, the fault dipping in
the direction of Sy is the most seismogenic, producing the highest magnitude event. Overall, the
maximum potential magnitudes for the range of dip directions modelled range from 1.29 to 1.74.
Deviating from the most critical fault dip angle, Figure 65b provides the results for a subvertical
fault dipping at 80°. A similar range in maximum potential magnitudes was obtained (1.51 to
1.77), but in this case faults with dip directions between 30° and 60° to Sy had slightly larger
moment magnitudes. Nevertheless, even when extending these models by applying injection
times of up to 8 hours, no large magnitude events (My, = 3) were produced.

Mechanistically, the models show that for the reverse fault far-field stress condition, the pre-
injection effective normal and shear stresses acting on the fault at any orientation are in a stable
state and far from failure (see example of Mohr stress circles and failure envelope in Figure 59).
The result is that when the fault slip event is triggered by the injected fluid pressures, the slip
area is limited in how far it extends beyond the area of fault experiencing the pore pressure
increase. When the slip event propagates beyond this area, it is met by fault contacts where the
strength is in excess of the initial shear stresses and therefore have capacity to resist the dynamic

89| Page



stress change. (This will be shown to be different for the strike-slip far-field stress regime where
more of the fault area is in a critically stressed state). For the range of parameters tested for the
reverse fault far-field stress scenario, it was not possible to generate events with My, > 3.
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Figure 65 — Moment release with fluid injection for models assuming a reverse fault far-field stress
regime and varying fault dip direction, for faults dipping at: a) 30°, and b) 80°. Reported for each case is
the quasi-static maximum moment magnitude (M,,), as described in the text.
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The other interesting result from these analyses is that the events generated included both strike-
slip and reverse faulting focal mechanisms. In other words, even though the far-field in-situ stress
boundary condition imposed was specifically that for a reverse fault stress regime, depending on
the fault orientation relative to the stress field, both reverse and strike-slip fault slip events could
be generated locally in response to the pore pressure increase interacting with the fault.

Strike-Slip Stress Regime

Figure 66 shows the results for a fault dipping at 80° in a strike-slip far-field stress regime with
varying dip orientation. As predicted by Andersonian fault mechanics, the fault dipping in the
direction of 60° from Sy is the most seismogenic, producing the highest magnitude event. In
contrast to the reverse fault far-field stress regime results, where the maximum magnitudes
generated were less than My, 2, a sizeable Mw 4.4 event was generated. Overall, the maximum
potential magnitudes for the range of dip directions modelled range from 1.67 to 4.44. Examining
the effective normal and shear stresses acting on the fault for these models, it could be seen that
for the dip directions between 60° and 90° from Sy (i.e., striking sub-parallel to Su), the entire
fault surface areaisin a critically stressed state. The result is that when the injected fluid pressure
triggers fault slip, the rupture propagates beyond the pressurized fault interval and it is met by
fault contacts already near their limit state resulting in the cascading growth of the slip area,
thereby generating a much larger magnitude event, in this case exceeding My, 4.

Deviating from the most critical fault dip direction, Figure 67 provides the results for varying dip
angles with a dip direction of 45° from Su. A similar broad range in maximum potential
magnitudes was obtained (1.70 to 4.41), with the larger moment magnitudes coinciding with sub-
vertical fault dips compared to those that were sub-horizontal. This again is in agreement with
Andersonian faulting theory, which defines sub-vertical faults as being the most active in a strike-
slip far-field stress regime (Anderson, 1951). As before, the pre-injection effective normal and
shear stresses acting on faults dipping from 75° to 90° results in these faults being critically
stressed over most of the length of the fault (i.e., closer to the shear failure envelope; see for
example, compare Figure 62 with Figure 59). Thus, with a small pressure perturbation, a larger
area of the fault becomes unstable and slips, resulting in a large seismic moment release.

Figure 68 illustrates the stress drop for the strike-slip far-field stress boundary condition analyses.
This shows that the stress drop for the more critically oriented faults, relative to the same fluid
injection rate and time (i.e., same injection volume) are ten times larger than the other fault
orientations. The stress drop is indicative of the criticality of the fault. Likewise, the shear
displacements and slip areas for the critical faults are almost 100 times larger than for the less
critical faults. Hence, under a strike-slip far-field stress regime, the seismic energy release (W =
At x TR? x D) for a critically oriented faults is approximately 36,000 times larger than for less
critically oriented faults, or as well, faults of any orientation in a reverse fault far-field stress
regime.
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Figure 66 — Moment release with fluid injection for models with a fault dipping at 80° but with different
dip directions, assuming a strike-slip far-field stress regime. For reference, a dip direction of 0° is in the
direction of Sy (i.e., 90° dips parallel to Sy). Reported for each case is the quasi-static maximum moment
magnitude (My,), as described in the text. The dashed arrows represent the sudden energy release and
corresponding moment magnitude (M, s,,q ). Shown below the main plot is one where the Moment
Release scale bar is three orders of magnitude smaller to show the details of the smaller events.
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Figure 67 — Moment release with fluid injection for models with a fault dipping at different angles with a
dip direction of 45° to Sy, assuming a strike-slip far-field stress regime. Reported for each case is the
quasi-static maximum moment magnitude (Mw), as described in the text. The dashed arrows represent
the sudden energy release and corresponding moment magnitude (M, 4 ). Shown below the main plot
is one where the Moment Release scale bar is three orders of magnitude smaller to show the details of
the smaller events.
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Figure 68 — Average stress drop (At) and shear displacement (D), and corresponding event magnitude,
derived from simulations with varying fault orientations within a strike-slip far-field stress regime. These
are based on the maximum induced seismicity event after 120 minutes of fluid injection.
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It is also noteworthy that moderately dipping faults (i.e., dipping 15° to 60°) were seen to be
capable of producing My, 2 events. According to Andersonian fault mechanics, moderately
dipping faults in a strike-slip stress regime would not be considered capable of generating
earthquakes, at least in the context of natural earthquakes (i.e., those driven by regional
tectonics and strain rates). However, in the context of induced seismicity, the modelling results
show that a moderately dipping fault in a strike-slip far-field stress regime can generate seismicity
if it locally experiences a pore pressure increase sufficiently large enough to trigger slip. Similar
to the reverse fault far-field stress regime model results, it was found that both reverse and
strike-slip focal mechanisms could be generated locally, even though the far-field stress boundary
condition was strike-slip. This again was observed to depend on the fault orientation relative to
the stress field and pore pressure increase interacting with the fault. The results also suggest that
not all faults that trigger a My 2 event might be capable of triggering an even larger event with
continued injection. The orientation of the fault relative to the far-field stress condition may
impose an upper limit on the maximum magnitude possible. This could have significant
implications with respect to developing and implementing a traffic light protocol.

Comparison to Machine Learning Results

The XSite™ simulation results indicate that critically oriented faults in a strike-slip far-field stress
regime are more likely to generate large magnitude events (Mw = 4), relative to less critically
oriented faults or those involving any orientation in a reverse fault far-field stress regime.
Mechanistically, the key consideration is how much of the fault is near its limit equilibrium
condition and therefore more sensitive to injected fluid pressures causing slip over a large area
beyond the area of the fluid pressure perturbation. A fault slip event might be triggered locally
where the fluid injection pressures directly interact with a fault, but if less of the fault is in a
critical state (either due to the fault orientation or far-field stress regime), the slip area and
therefore the event magnitude might have a smaller upper limit.

A point of comparison to the machine learning results is with respect to the relationship between
the b-value and assumed far-field stress conditions. We first acknowledge that established
relationships between b-values and far-field stresses are based on focal mechanisms for natural
earthquakes where the distribution of events used to calculate the b-value are derived from a
large number of faults within the same tectonic region, each being critically stressed by the same
tectonic strain rate under the same far-field stress regime. By extension, these faults are assumed
to be similarly oriented with respect to the orientations most critical for the given far-field stress
regime per Andersonian fault mechanics (i.e., strike-slip faults for a strike-slip stress regime,
reverse faults for a reverse far-field stress regime, etc.), and thus the focal mechanisms are
considered to be representative of the far-field stresses. Under these conditions, studies show
that the b-value decreases, meaning a higher likelihood of larger magnitude events, when
comparing a normal (Sv > Sy > Sh) to a strike-slip (Sy > Sv > Sh) to a reverse (Sy > Sh > Sy) far-field
stress regime (Schorlemmer et al., 2005; Scholz, 2015; Mehrabifard & Eberhardt, 2021). For the
case of induced seismicity, a clear relationship is not expected between b-value and stress regime
when the b-value is calculated from events recorded within a small area, for example the
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response from hydraulic fracturing operations for a single well pad. At this scale, the recorded
seismicity would be restricted to that derived from a single dominant fault structure, or several
structures in close proximity, that may or may not result in a focal mechanism representative of
the far-field stress conditions; as previously shown, the focal mechanism can differ locally from
the far-field stresses depending on the orientation of the fault being triggered during fluid
injection. For the machine learning analyses, the b-values used represent an intermediate case,
as they are calculated from induced seismicity events occurring within a 100 km radius of each
well. By calculating the b-value over a large area, it is expected that the distribution of event
magnitudes encompasses a large number of faults spanning a significant part of the Montney,
albeit with possibly varying orientations. Hence, it is reasonable that the b-values calculated in
this fashion could follow the same logic as the b-values for natural earthquakes with respect to
serving as an indicator of the far-field stress regime.

From the machine learning regression results, the b-value of events within 100 km radius of a
well was identified to be the top predictor of induced seismicity event severity (Figures 44 and
45). The SHAP plots further showed that this has a positive correlation, meaning that wells that
have experienced larger magnitude events have higher calculated b-values (Figures 46 and 47).
This might seem contradictory at first as higher b-values typically suggest a lower likelihood of
large magnitude events (e.g., van der Elst, 2021). One explanation could be as follows. Using the
b-value as an indicator for the far-field stress regime (Schorlemmer et al., 2005), the higher b-
values would correspond with a strike-slip stress regime, which the numerical simulation results
suggest has a greater potential to generate large magnitude events (for critically oriented faults).
In other words, the smaller population of wells that have experienced more severe induced
seismicity events are surrounded by a larger population of wells (within a 100 km radius) that
have more generally experienced events with a magnitude distribution (i.e., b-value)
characteristic of a strike-slip far-field stress regime. This is independent of the measured focal
mechanism for these large magnitude events, which the numerical results show can be a reverse
slip mechanism locally within a strike-slip far-field stress regime.

A second feature from the machine analysis related to the stress regime was the variation of the
local orientation of Sy (observed at the well) relative to the regional trend (“Shmax_variation”).
This was seen to be a top five predictor for the classification susceptibility analyses (Figures 26
and 27). The SHAP plots for these (Figures 32 and 33) show a negative correlation, meaning the
likelihood of generating seismicity decreases when values for this feature increase; i.e., a higher
likelihood of seismicity can be expected where the local Sy orientation is similar to the regional.
However, this does not speak to the orientation of the population of faults in proximity to the
wellbore and is inherently biased towards reverse faults. It is also noted that there are high values
in the SHAP plots (red dots) that also correlate with higher susceptibilities (possibly attributed to
strike-slip stress conditions). With respect to the regression severity analyses, Shmax_variation
was again seen to be an important feature (Figures 44 and 45), but in this case, the SHAP plots
show a positive correlation (Figures 46 and 47). This suggests an increased likelihood of larger
magnitude events when the local orientation of Sy deviates from the regional. One interpretation
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is that as the orientation of Sy deviates from the regional orientation, and assuming the
population of faults are randomly oriented and not necessarily aligned with the present day
tectonic stresses, the potential for strike-slip faulting increases. The numerical simulation results
suggest that sub-vertical faults with dip directions deviating from Sy become more critically
stressed resulting in a higher potential for generating a larger magnitude event.

Together, the machine learning and numerical results (acknowledging the numerous model
assumptions and simplifications related to the representation of the fault and geology), suggest
that in a real-time seismic risk evaluation using a Traffic Light Protocol, the detection of a My 2
event in a strike-slip far-field stress regime should be treated differently than a My 2 eventin a
reverse fault far-field stress regime. The susceptibility of generating induced seismicity might
actually be higher in a reverse fault far-field stress regime, but more limited with respect to the
maximum magnitude potential. Whereas in a strike-slip far-field stress regime, the generation of
smaller My, 2 events have a higher likelihood of serving as a pre-cursor (i.e., early warning) of a
possible larger My 4 event. Again, this finding is specific to the far-field stress regime and not the
focal mechanism, which in the case of fluid-injection induced seismicity, as observed in the
numerical simulation results, can include a reverse fault slip event occurring locally in a strike-
slip far-field stress regime.
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9. Conclusions, Recommendations and Future Work

9.1. Conclusions

Machine Learning

The application of machine learning was investigated for the purpose of generating induced
seismicity susceptibility maps and ranking the influence of relevant geological and operational
features on the likelihood (classification of wells being seismogenic or not) and severity
(maximum magnitude regression) of induced seismicity events. For this purpose, a
comprehensive database was compiled using both publically available and proprietary data for
the Montney region of northeastern British Columbia. From this database, datasets were
generated specific to the analyses performed: 1) a classification feature importance analysis,
based on a combined dataset of all geological and operational features at each hydraulic
fracturing well; 2) a classification susceptibility analysis, based on a restricted dataset limited to
geological features and those operational features that apply to susceptibility; 3) a classification
susceptibility mapping analysis, based on the restricted dataset of geological and susceptibility-
relevant features interpolated to a 2.5 km grid spacing; and 4) a regression severity analysis,
based on a combined dataset of geological and operational features that included the
maximum magnitude of the induced seismicity events associated with each well. Eight different
machine learning algorithms were tested for these analyses. The machine learning workflow
included training and tuning (i.e., calibrating) the models through iteration against 75% of the
total, and then testing the model performance against the remaining 25% of the data unseen
by the trained models.

For the classification analyses (i.e., likelihood of wells being seismogenic), the Light GBM,
XGBoost and Random Forest machine learning models were observed to be the top performers
for both the feature importance and susceptibility analyses. The results of the feature
importance analysis, which considered all features, ranked the depth to the top of the
basement as being the most important predictors of a well being seismogenic. This was shown
to have a negative correlation, meaning that shallower depths to the basement increases the
likelihood of a well being seismogenic. The most important operational feature was shown to
be the total injection volume, which had a positive correlation; higher injection volumes
increases the likelihood of a well being seismogenic. Overall, the geological features were found
to generally rank higher in importance than the operational features. For the susceptibility
analysis, which considered the geological features and only operational features relevant to
susceptibility, the results showed the most important predictors to be the depth to the top of
the basement (negative correlation), magnitude of the minimum horizontal stress (positive
correlation), azimuth difference between the local and regional orientations of the maximum
horizontal stress (negative correlation), and depth to the top of the Montney (negative
correlation).
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These findings informed the selection of the best performing classification models (Light GBM
and Random Forest), which were then applied to the susceptibility-relevant feature data
interpolated to the Montney grid to generate induced-seismicity maps. Two sets of maps were
generated for each model, one relative to a minimum moment magnitude (My) of 1.1 and one
for a minimum My, of 2.0. Overall, the locations of susceptible areas in both models agree with
the location of induced seismicity events. The Light GBM susceptibility map was seen to show
areas with probabilities greater than 10% as being more concentrated around identified
hotspots, whereas the Random Forest susceptibility map showed more dispersed probabilities.

For the regression analyses (i.e., severity potential with respect to maximum magnitude of the
induced seismicity events associated with a hydraulic fracturing well), the top performing
machine learning models were found to be Light GBM and Random Forest. The feature
importance results ranked the b-value of events (within 100 km of the well) as being the most
important predictor of severity, having a positive correlation. Other important predictors of
severity were found to include standard deviation of pore pressure gradient (positive
correlation), distance of well from the Cordilleran thrust belt (negative correlation), number of
active completion days (negative correlation) and the thickness of the Montney formation
(negative correlation).

Investigating the correlations found in the likelihood and severity analyses further, some of
these appear to be straight forward. A positive correlation between the standard deviation of
the pore pressure gradient and increased likelihood and severity of induced seismicity events,
concurs with the known influence of pore pressure compartmentalization. A negative
correlation between the distance of the well from the Cordilleran thrust belt and event
severity, corresponds with the expectation of fault density increasing towards the Cordilleran
thrust belt and therefore the closer a well is to the thrust belt the higher the likelihood of a
hydraulic fracturing operation encountering a critically stressed fault.

Other correlations are less clear, including for some of the top predictors. For example, the
negative correlation between depth to the top of the basement and induced seismicity
susceptibility suggests that shallower depths to the basement increases the likelihood of a well
being seismogenic. This is possibly explained as the distance between the injection well and
basement top increasing, resulting in a reduced likelihood of the fluid injection pressure front
interacting with basement faults. However, the correlation does not speak to the depth of the
injection wells or the influence of higher stresses for deeper wells on susceptibility. The positive
correlation between higher b-values and higher event magnitudes is counterintuitive. Typically,
lower b-values suggest a higher likelihood of a large magnitude event.

Overall, it is recognized that machine learning analyses only find data relationships and
correlations, but does not connect these to cause and effect mechanisms. Models must be
properly vetted for data errors, biases, censoring or overfitting, and results considered with
caution. It was found that nonlinear machine learning algorithms far outperformed the linear
algorithms, suggesting a nonlinear nature of the key parameters influencing induced seismicity.
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The Light GBM model consistently performed better than the other models tested. This was
attributed to the Light GBM decision tree algorithm splitting its tree leaf-wise following the best
fit, whereas other boosting algorithms like XGBoost split the tree depth-wise or level-wise. In
doing so, the leaf-wise algorithm reduces more loss than the level-wise algorithm, and hence
results in better accuracy. It was also surprisingly fast, hence the reference to ‘Light’

Advanced Numerical Modelling

To improve the interpretability of the machine learning results, advanced 3-D numerical
modelling was performed to investigate its utility in providing mechanistic cause and effect
insights into correlations that are unclear or counterintuitive. Numerical modelling was
performed using the 3-D hydraulic fracturing simulator XSite™. For the negative correlation
between basement depth and induced seismicity susceptibility, the modelling results show that
the extent of the injected fluid pressure invaded zone is stress (i.e., depth) sensitive, where for
deeper basement and injection scenarios, the corresponding higher stresses act to limit the
extent of the invaded zone transmitted outwards from the injection point and hydraulic
fracture. For shallower basement depths, the lower stress environment results in a significantly
larger invaded zone, and thus, as the distance to the top of the basement becomes smaller (i.e.,
lower stresses), fluid injection results in a larger volume of elevated pore pressures, which in
turn results in an increased likelihood of interacting with a critically stressed fault in the
basement to trigger an induced seismicity event.

With respect to severity, the numerical modelling results showed that faults in stiffer rock
masses are able to store more strain energy and therefore are more likely to produce larger
magnitude events. This can be connected to machine learning features like P-wave velocity,
which showed a positive correlation with event magnitude. Higher P-wave velocities
correspond with stronger and stiffer rock. The same numerical simulations also suggest that
induced seismicity will be observed earlier for fault slips in stiffer rock. Similarly, the machine
learning outcomes revealed that larger magnitude events are associated with completions
involving a smaller number of active days. Larger magnitude events were also observed for
simulations assuming a strike-slip far-field stress regime compared to a reverse fault far-field
stress regime. Collectively, these results demonstrate the value of numerical modelling in
providing insights when multiple factors contribute to the mechanistic response, in this case the
dependence of induced seismicity magnitude on rock mass stiffness, in-situ stress regime and
fluid injection time. For example, a transitional condition was observed for an intermediary case
of rock mass stiffness (E = 32 GPa), where the fault was seen to be less critically stressed
compared to the higher stiffness cases, allowing a longer fluid injection time. This in turn
allowed more fault area to see an increase in fluid pressure (and decrease in effective stress),
which when combined with the intermediary stiffness still allowing for considerable strain
energy to be stored, resulted in a larger magnitude event than was observed for the stiffer rock
mass case of E = 48 GPa.
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Numerical modelling results were also presented with respect to the influence of fault
orientation. These results showed that critically oriented faults in a strike-slip far-field stress
regime are more likely to produce large magnitude events (My, = 4), whereas those in a reverse
fault far-field stress regime may be more limited with respect to the maximum magnitude
possible. This was seen to relate to how the far-field stresses transform onto the fault surface
and how much of the resulting fault surface area is critically stressed. The simulation results
showed that for adversely oriented faults in a strike-slip far-field stress regime, more of the fault
surface is initially near its limit equilibrium condition and therefore these faults are more
sensitive to injected fluid pressures causing slip over a large area beyond the area of the fluid
pressure perturbation. Simulation results show for other scenarios that a fault slip event might
be triggered locally where the fluid injection pressures directly interact with the fault, but if less
of the fault is in a critical state (either due to the fault orientation or far-field stress regime), the
slip area and therefore the event magnitude might have a smaller upper limit. This was seen to
be the case for faults modelled assuming a reverse fault far-field stress regime.

These findings helped to explain the machine learning results that counterintuitively correlated
higher b-values with increased induced seismicity event magnitudes. Expected b-value trends are
related to natural earthquakes where the key driver is the tectonic environment and only faults
that are critically stressed are seismogenic. In such an environment, both strike-slip and reverse
faults are critically stressed over large areas (this is dependent on depth, with natural reverse
fault earthquakes generally occurring at much greater depths than natural strike-slip
earthquakes). In the case of induced seismicity, if sampling event magnitudes over a large area
(e.g., 100 km radius of a well), the b-value calculated might likewise be indicative of the far-field
in-situ stress regime with higher b-values corresponding with a strike-slip far-field stress regime
and lower b-values with a reverse fault far-field stress regime. Within these distributions, the
modelling results show that it is possible to generate a large magnitude induced seismicity event
with a reverse fault focal mechanism (locally) but in a strike-slip far-field stress regime
(regionally). This depends on the orientation of the fault experiencing the pore pressure increase,
relative to the orientation of the far-field stress regime.

Together, the machine learning and numerical modelling results suggest that if operating in a
strike-slip stress regime in stiffer rocks and there is a lack of early, significant seismicity (of My, >
1 or 2) with increasing injection time, then this might be a sign that strain energy is accumulating
towards a potentially large event (My, 2 4). Similarly, in the context of a Traffic Light Protocol, the
detection of a My 2 event might be more concerning when the formation targeted by the
injection, or adjacent to it, is stiffer (e.g., E> 32 GPa) and if operating in a strike-slip far-field stress
regime.

9.2. Recommendations/Guidelines

It was demonstrated that the quantity and quality of data is of central importance in any
empirical analysis, especially in the training and interpretation of machine learning models. As
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unconventional gas development in northeastern British Columbia and the Montney continues,
the continuous collection of geology, stress regime and operational data will create
opportunities to further improve the machine learning results and interpretations presented in
this report, leading to updating of the induced seismicity susceptibility maps generated.

Based on the experiences gained from this study, and limitations encountered with respect to
data quantity and quality, the following recommendations are made as guidelines with respect
to using machine learning to generate induced seismicity susceptibility maps:

Data Quality Assurance and Control (QA/QC): Both publicly available and proprietary

datasets contain missing data and/or outliers. Care must be taken to remove outliers

and fill in missing data (e.g. through extrapolation) before starting a machine learning
analysis.

Exploratory Data Analysis: At the start of an analysis, it is recommended that an
exploratory data analysis be performed in order to obtain an initial understanding of the
data and plan the next steps accordingly. This includes conducting a correlation analysis
between the features and target, between the features themselves, and for the label
count when performing a classification likelihood analysis.

Model Performance Metric: In a binary classification analysis, the number of data points
in each classification group (i.e., labels) can result in the dataset being either balanced
(similar ratio between data points in each class) or unbalanced (majority of data points
fall into one class). Based on the class label count appropriate model evaluation metrics
should be considered. Particularly when data is imbalanced, the accuracy metric is not
an appropriate option and other metrics such as sensitivity (recall), precision or F1-score
are more suitable. In this analysis we used F1-score as it considers both sensitivity and
precision.

Algorithm Selection: There is no single machine learning algorithm (i.e., model) that is
always suitable for either likelihood classification or severity regression. Several
different models should be tested and evaluated as the performance of models depend
on many factors such as data quantity, quality and type. In this study, for each analysis
eight different algorithms were tested and the best performing models were selected
for validation testing and interpreting the results.

Validation Testing: Validating the algorithms and testing the model performance against
unseen data is an essential step in machine learning analyses. As was demonstrated in
this report for the susceptibility likelihood analysis, the XGBoost model was seen to
perform well on the training data but not the unseen test data and therefore was
omitted from the rest of this specific analysis.

Nonlinear Machine Learning Algorithms: The Support Vector Classifier showed good
performance when investigating induced seismicity likelihood for the combined

102 | Page



geological and operational dataset. However, because this model uses a nonlinear
kernel, the interpretation of its results is time consuming, limiting its use to that for a
subset of the data. Using this model is not recommended unless there is a specific need
that requires it.

Susceptibility Maps: When developing induced seismicity susceptibility maps, it is
recommended to use more than one top performing algorithm. Different algorithms are
sensitive to different types of data and/or reduce model error by reducing either bias or
variance. Therefore, comparing the output from different models adds more confidence
to the generated maps. It should also be understood that susceptibility is a spatial
probability term and is different from hazard. Induced seismicity susceptibility maps
derived from machine learning analyses therefore communicate the spatial likelihood of
a well at a specific location being seismogenic. Seismogenic is relative to a minimum
moment magnitude, which is based on the magnitude of completeness (i.e., lower cut
off) of the data used in the analysis. As was shown in this study, using all data available
resulted in susceptibility maps for events greater than My, 1.1; but the data was also
filtered to a higher magnitude threshold to generate susceptibility maps for events
greater than My 2.0.

9.3. Future Works

Several opportunities for future work have been identified, to address limitations or to extend
the analyses presented in this report. These include:

Proprietary databases like geoLOGICS’s geoSCOUT potentially contain additional yet to
be investigated data that might prove to be significant. For example, through access we
were granted by geologic to their geoSCOUT database, we were able to extract data
from several key geophysical well logs. This data represents a direct measure of the
reservoir characteristics and conditions, and to our knowledge, this is the first time such
data have been included in a machine learning analysis. However, our use was not
complete as the data available is substantial and extracting it time consuming. A
thorough vetting of such sources for additional features to be considered would help to
extend this work with respect to improving confidence and reliability in the
susceptibility maps generated.

It is recognized that without fluid injection there would not be any induced seismicity.
The features included in the analyses presented were limited to those that are readily
available and considered most important (e.g., injection volume, rate and pressure).
Further work should more thoroughly investigate the influence of different injection
scenarios on induced seismicity susceptibility.
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e An extension of the numerical modelling work presented would be to develop and apply
a mechanistically-informed, physics-based feature selection process in the development
of improved induced seismicity susceptibility maps.

e The work presented and maps generated focussed specifically on spatial susceptibility of
induced seismicity likelihood. The analyses related to severity were limited to feature
importance and correlations. A clear next step in this work would be to extend the
analysis to hazard and risk mapping. For example, a hazard map could be generated by
linking the influence of operational features to susceptibility and severity to develop a
hazard map that speaks to the maximum magnitude potential.
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Appendix A - Feature Definitions

The following describes all features included in one or more of the different machine learning
analyses. Each feature is listed with its abbreviation and a short description, together with
other relevant information such as the rationale for its consideration, the number of missing
features, and relevant references. The number of missing features where reported are relative
to a total of 6530 wells and 95,807 stages in the database compiled. For easy reference, the
features are listed in alphabetical order according to the abbreviations used in the figures in the

report.

Abbreviation

Feature Name (units)

Description

Active_Days

Well - number of active days (d)

Total number of active completion days.
(See Verdon and Bommer, 2020).

Avg_Frac_Spacing

Well - avg frac spacing (m)

Average spacing between stages at each
well. Data for 2609 wells (of 6530) are
missing. (See Fox et al., 2020).

Avg_Inj_Rate

Well — avg injection rate (m3/min)

The average injection rate for the well.
Calculated by averaging the fluid injection
rates for each stage. Data for 10,514 stages
(of 95,807) are missing. (See Schultz et al.,
2018).

Avg_prop/Meter

Well - avg proppant placed per
meter (t/m)

The average proppant injected in the well

normalized to the well’s completion length.
(See Fox et al., 2020).

Avg_prop/stage

Well - avg proppant placed per
stage (t/stage)

The average proppant injected per stage.
Calculated from dividing the total proppant
per well by the number of stages. Data for
1074 wells (of 6530) are missing. (See Fox
at al., 2020).

Avg_Vol/Meter

Well - avg fluid pumped per meter
(m*/m)

The average volume injected in the well

normalized to the well’s completion length.
(See Fox et al., 2020).

Avg_Vol/Stage

Well - avg fluid pumped per stage
(m3/stage)

The average fluid volume injected per stage.
Calculated from dividing the total injected
volume per well by the number of stages.
Data for 848 wells (of 6530) are missing.
(See Fox et al., 2020).

b_value

100km_b_value

The b-value of induced seismicity events
located within a 100 km radius of each well.
The 100 km radius is selected to ensure a
minimum of 300 events for calculating the
b-value. (See Amini and Eberhardt, 2019).
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Basement_Top

Precambrian_Basement_Top_TVD
(m)

True vertical depth to the top of the
Precambrian basement. (See Pawley et al.,
2018).

BHCPv

BHCPv (m/sec)

P-wave velocity of the Montney formation
at the well location. Calculated as the
average value from the borehole
compensated sonic logs over the Montney’s
depth interval. This data was accessed
through geoSCOUT.

Bulk_Density

Bulk_Density (kg/m?3)

Bulk density of the Montney formation at
the well location. Calculated as the average
value from the borehole density logs over
the Montney’s depth interval. This data was
accessed through geoSCOUT.

Comp_length

Well — completed length (m)

Total completed length of well, calculated
from the beginning of the first stage until
the end of the last stage. Data for 2436
wells (of 6530) are missing.

Dist_Base

Dist_Base (m)

Vertical distance from the injection point to
the top of the Precambrian basement. (See
Pawley et al., 2018).

Dist_CTB

Distance_CTB (km)

Horizontal distance from the well head to
the Cordilleran thrust belt. (See Mossop and
Shetsen, 1994).

Dist_Faults

Distance_Faults (km)

Shortest distance between well heads and
mapped faults. (See Hayes et al., 2021).

Dist_LowerForm

Dist_Deb/Bell (m)

Vertical distance from the injection point to
the top of the formation below the
Montney. The formation below the
Montney varies between the Debolt and
Belloy. At each well, the formation that is
closer to the Montney was selected as the
formation below the Montney. (See
Wozniakowska and Eaton, 2020).

Vertical distance from the injection point to

Dist_MidMon Dist_MidMon (m) the top of the Middle Montney Formation.
(See Wozniakowska and Eaton, 2020).
Vertical distance from the injection point to

Dist_TopMon Dist_TopMon (m) top of the Montney Formation. (see

Wozniakowska and Eaton, 2020).

Gamma_Ray

Gamma_Ray (GAPI)

Gamma ray value of the Montney formation
at the well location. Calculated as the
average value from the borehole gamma
ray logs over the Montney’s depth interval.
This feature serves as a proxy for clay
content in Montney. This data was accessed
through geoSCOUT.
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Lower_Form

Lower_Formation_ TVD (m)

True vertical depth to the top of the
formation below the Montney. The
formation below the Montney varies
between the Debolt and Belloy. At each
well, the formation that is closer to the
Montney was selected as the formation
below the Montney. See Wozniakowska and
Eaton, 2020).

Max_Inj_P

Well — maximum injection
pressure (MPa)

The maximum injection pressure for the
well. Calculated by selecting the highest
fluid injection pressure across all stages for
the well. Data for 19,675 stages Data for
10,514 stages (of 95,807) are missing.

Max_ISIP

Max_ISIP (MPa)

Maximum instantaneous shut-in pressure
for the well.

Max_Pb

Max_Pb (MPa)

Maximum breakdown pressure for the well.

Mon_Thickness

Montney_Thickness (m)

Thickness of the Montney formation
calculated from the top of the Montney to
the top of formation below. For this feature,
only wells that all three top formations
(Montney, Belloy and Debolt) were
identified are considered. Next, either the
Debolt or Belloy was used depending on
which was closer to the Montney. Data for
5576 wells (of 6530) are missing.

Montney-Mid

Middle_Montney_TVD (m)

True vertical depth to the top of the Middle
Montney.

Montney-Top

Upper_Montney TVD (m)

True vertical depth to the top of the Upper
Montney.

Number_Stages

Well — stages actual

Number of actual completed stages per
well.

Reservoir pore pressure to depth ratio. (See

pp_grad Pore Pressure Gradient (kPa/m) Pawley et al., 2018).
Standard deviation of the reservoir pressure
opgrad_SD Standard Deviation of Pore to depth ratio calculated between each well

Pressure Gradient

and the five closest pore pressure gradient
values.

Seismo_index

Seismogenic_index

The seismogenic index is a statistical
characteristic of the fluid-induced
seismicity. This quantity is independent of
injection time and of any other injection
characteristics. It is completely defined by
seismotectonic features of a given location.
The larger the index value, the larger the
probability of a significant magnitude event.

Shear_Strain

Shear_Strain

Regional shear strain field calculated from
horizontal motions measured at Global
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Navigational Satellite System (GNSS) sites
throughout western Canada. (See Kao et al.,
2018).

Shmax_variation

Shmax Variation (degree)

Variation between local maximum
horizontal stress orientation (derived from
World Stress Map and Grasby et al., 2012)
and regional maximum horizontal stress
orientation (assumed to be N45°E).

The minimum horizontal stress. This data

Shmin Shmin (MPa) was accessed through geoSCOUT. (See
Pawley et al., 2018).
The total proppant injected for the well.
Total_Prop Well - Total Proppant Placed (t) Data for 1074 wells (of 6530) are missing.

(See Fox et al., 2020).

Total_Volume

Well - Total Fluid Pumped (m?3)

The total fluid injected in the well.
Calculated by summing the fluid injected for
each stage. Data for 719 wells (of 6530) are
missing. (See Schultz et al., 2018).

WellDensity

Well density

The number of horizontal wells within 1, 3,
5, and 10 km of the observed well. This
feature serves as a proxy for well
interference and the density of field
development. (See Fox et al., 2020).
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Appendix B - Databases and Codes

This appendix contains the list of all databases used in this report including the data description,

format, file size(s) and metadata which will be provided separately from the report.

Hydraulic Fracturing Completion Data

Hydraulic fracturing data for the Montney region was sourced from geoLOGIC systems Itd.’s Well
Completions & Frac Database (geoLOGIC) through their gDCweb software. This was made
available through a license agreement between geoLOGIC systems Itd. and Geoscience BC. (Not

publishable)

Earthquake Catalogues

Data Description Format Size
Earthquake Combined from | CSV file 530 KB
Catalogue from 2000 | Enlighten’s report

to Feb-17-2020 and NRCan

Geological Features

Data Description Format Size
Geological features | Raw Geological data | CSV, Shape file and | 500 MB
excluding proprietary | plus interpolated | Raster files

data (Depth to top of | data at hydraulic

Basement, Shear | fracturing wells

Strain, Mapped | locations and at 2.5

faults, Bulk Density, | km grid across

P-wave velocity and | Montney

clay content)

Final Databases

Data Description Format Size
Well Features | Interpolated CSV file 5 MB
Database. Excluding | geological data at

proprietary data | hydraulic fracturing

(Depth to top of | wells used for
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Basement, Shear
Strain, Mapped
faults, Bulk Density,
P-wave velocity and
clay content)

training/testing
machine learning
models.

Montney Grid | Interpolated CSV file 2 MB
Database. Excluding | geological data at 2.5
proprietary data | km grid used for
(Depth to top of | generating
Basement, Shear | susceptibility maps
Strain, Mapped
faults, Bulk Density,
P-wave velocity and
clay content)
Codes
Data Description Format Size
Codes used in this | Python codes in | IPYNB files 10-15 MB
analysis Jupyter notebook
environment,
developed for this
analysis
High-Resolution Figures
Data Description Format Size
Full size figures Full size images used | PNG files 100 MB

in the final report
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