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Executive Summary 

This report describes the results of a study aimed at better understanding the relationship between 
hydraulic fracturing and induced seismicity in the Montney formation of northeast British Columbia. The 
study applies multivariate statistical analysis in an attempt to identify which hydraulic fracturing 
parameters show the strongest correlation to induced seismic events. The analysis also looked at a 
limited set of geological parameters. Using machine learning techniques, it addresses both induced 
seismicity likelihood and magnitude without relying on the supposition of a causal mechanism. One of 
the additional goals of the study was to provide an open-source, reproducible analysis for public and/or 
expert scrutiny, providing a framework for evaluating other formations in which induced seismicity is 
believed to be caused by hydraulic fracturing. 

Data for the study came from several seismic event catalogues, published and proprietary maps and two 
collections of hydraulic fracturing data. Extensive data preparation and filtering were applied prior to 
modeling. All analyses were performed using R, an open-source programming language. Of the roughly 
2,000 wells in the data after filtering, between 21% and 27% were classified as seismogenic, depending 
on the data set used. For the regression workflow, performed only on the seismogenic wells, just under 
600 wells were included after filtering and correcting for missing features. Several exploratory data 
analysis techniques were used to determine the optimal features to include in both the classification 
and the regression workflow. During the feature selection process, geological features consistently 
ranked higher than completions features, prompting a re-run of the feature ranking process with 
completions features only. 

Several different models, covering a range of model complexity, were run for both the seismogenic 
classification and the magnitude regression analyses. Feature importance and interaction were analyzed 
for each model, and partial dependence and individual conditional expectation were examined. In 
addition, interpretability techniques were applied to one specific well, 100/09-35-081-18W6/00, which 
was associated with a magnitude 2.7 induced seismic event, in order to examine how the models related 
input features to the seismic outcome and magnitude prediction. 

This study concludes that: 

1. Both the classification of wells as seismogenic and the prediction of induced event magnitude 
are highly dependent on several factors, including the data set used, the specific model used, 
and the subset of well, completions and geological features selected for inclusion in the final 
models. As a result, the analysis does not single out one or more clearly causal features that are 
responsible for induced seismicity from hydraulic fracturing in the Montney in NEBC. Notably, 
deciding which features to carry forward into the final modeling could not be achieved by the 
machine learning workflow alone but required a considerable amount of human intervention. 

2. In the seismogenic classification, feature interaction tends to mimic feature importance, 
suggesting that feature interactions contribute to a higher model variance, especially for the 
more complex models. The simplest model places a relatively high negative importance on 
minimum horizontal stress and high positive importance on geothermal gradient, distance 
between wells and mean proppant per stage, while the more complex models place a relatively 
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high importance on Paleozoic structure and distance to faults. In the magnitude regression, 
most models show a relatively high importance for top of Montney structure and distance to 
faults (normal and thrust). Interactions tend to be higher for completions parameters than for 
geological parameters. It is difficult to know, however, whether some of these parameters may 
be serving as a proxy for other, more difficult to measure, features, either of the completion or 
of the reservoir. 

The following appendices are available separately: 

Appendix A: Feature Definitions 

Appendix B: Methodology Details 

Appendix C: Full-Size Figures 

Appendix D: Database 

Appendix E: Github Repository 
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I. Introduction 

Induced seismicity is a concern in northeast British Columbia (NEBC) and many other parts of the world. 
Numerous studies (e.g., BC OGC, 2012; Kao et al., 2018), have linked anomalous induced seismicity in 
NEBC to the practice of hydraulic fracturing, which involves the large-scale stimulation of oil and gas 
reservoirs by injecting large volumes of fluid to break the rock in the subsurface. In February, 2019 the 
British Columbia (BC) Minister of Energy, Mines and Petroleum Resources issued its Report of the 
Scientific Hydraulic Fracturing Review Panel, which included input from a large number of stakeholders 
and experts regarding the ability of BC’s regulatory framework to manage the risks of hydraulic 
fracturing including, but not limited to, induced seismicity. The report emphasized the important role 
that peer-reviewed science could have in informing best-practice regulations and increasing the public’s 
confidence in the regulator.  

Following the publication of the panel’s report, both the British Columbia Oil and Gas Commission (BC 
OGC) and Geoscience BC initiated research projects to increase understanding of hydraulic fracturing 
induced seismicity specifically in the Montney formation in NEBC.  After a preliminary geomechanical 
investigation of the Kiskatinaw Seismic Monitoring and Mitigation Area, Fox and Watson (2019) 
recommended that statistical methods be applied to look for correlations between hydraulic fracture 
operational parameters, such as injected volumes and rates, and induced seismic events in NEBC. This 
followed similar recommendations by others including the BC OGC (2012). 

Methods 
This study applies multivariate statistical analysis in an attempt to identify which hydraulic fracturing 
parameters show the strongest correlation to induced seismic events in the Montney in NEBC. 
Multivariate statistical approaches have been used successfully to link induced seismicity to geological 
risk factors in the Duvernay formation in Alberta (Pawley et al., 2018; Schultz et al., 2018) and to link 
well completion factors to both higher hydrocarbon production and lower completion costs in the 
Montney of the Swan-Elmworth area in Alberta and BC (Lenko and Foster, 2016). This study employs a 
similar workflow and also applies some additional data science techniques aimed at feature selection 
and model interpretation. 

This study centers around the use of machine learning to model induced seismicity likelihood (using a 
classification model) and magnitude (using a regression model). One of the benefits of a machine 
learning approach is it does not rely on the supposition of a causal mechanism for the phenomenon of 
interest. Machine learning is a broad and complex topic, the definition of which is outside of the scope 
of this report. Many resources are available to derive a more detailed understanding of machine 
learning and statistical methods in general (e.g., Molnar, 2019 and James et al., 2017).  

Anticipated Outcomes 

Upon initiation of the study, it was anticipated that the results would include: 

• A report summarizing the study findings and recommendations for formation-specific mitigation 
measures to reduce the influence of high-importance features on induced seismicity 
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• A database of completion parameters and limited database of geological risk factors for Montney 
wells in the study area provided in a peer-reviewed format for public review and use in the study 

• A Montney formation-specific predictive model for induced seismicity likelihood and magnitude 

• An open-source, reproducible analysis for public and/or expert scrutiny, providing a framework for 
evaluating other formations in which induced seismicity is believed to be caused by hydraulic 
fracturing 

Study Area 

The NEBC Montney formation has been divided by the BC OGC into two primary regions for the 
understanding of the causes of and the mitigation of induced seismicity.  These regions, illustrated in 
Figure 1, are the Kiskatinaw Seismic Monitoring and Mitigation Area (KSMMA) and the North Peace 
Ground Motion Monitoring Area (NPGMMA).  Data from both areas were included in this analysis. 

Figure 1. Study area map illustrating extents of the KSMMA and the NPGMMA. 
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Geological Background 
The Montney formation of NEBC and west-central Alberta represents a Lower Triassic (Griesbachian to 
Spathian) unconformity bounded wedge of mixed clastic and carbonate sediments (Euzen et al., 2018).  
This formation records a progradation from its eastern subcrop to a thickness of over 300 metres and a 
westwards transition from shoreline sediments to a system dominated by distal shelf siltstones 
punctuated by mass wasting deposits (i.e. turbidites) (Davies et al., 2018). 

The extremely fine-grained nature of the Montney siltstones and compaction due to the maximum 
burial depth of the Montney has resulted in extremely low permeability over much of NEBC. The 
transition to these lower permeability sediments corresponds to the onset of an over-pressured (i.e. >10 
kPa/m) deep basin (pervasive hydrocarbon saturations dominated by natural gas and liquids).  This 
massive hydrocarbon trap covers an area of over 26,000 km2 (Hayes, 2012).  The ability to access this 
resource through fractured horizontal wells in a region with significant production infrastructure has 
made the NEBC Montney a highly attractive target for drilling and completion, specifically hydraulic 
fracture stimulation, activity. 

The structural setting of the NEBC Montney is particularly relevant to the subject of induced seismicity.  
The KSMMA overlies the Dawson Creek Graben Complex (Barclay et al., 1990), a feature that resulted 
from the collapse of the Peace River Arch at the end of the Devonian through the early Mississippian by 
way of a series of normal faults.  These structures were reactivated by compression during the Columbia 
and Laramide Orogenies at the end of the Jurassic and Cretaceous respectively to create a 
transpressional structural setting.   

The NPGMMA can be characterized as having a somewhat less complex structural history.  The 
dominant structural style is predominated by right-lateral strike-slip movement along the Hay River 
Fault Zone.  Dip-slip faults, including some inter-formational thrust faults contribute to the secondary 
structural component.  

II. Data 

The study required the collection of completions and geological features from a variety of seismic event 
catalogues and well, hydraulic fracture stimulation and geological data sources. Each is discussed 
separately in this section. Definitions of all of the features used in the modeling are provided in 
Appendix A. 

Earthquake Catalogues 

Three earthquake catalogues were combined in this study: the Composite Alberta Seismicity Catalog 
(Fereidoni and Cui, 2015), a comprehensive Geological Survey of Canada (GSC) catalogue (Visser et al., 
2017), and a catalogue from the BC OGC and GSC (Babaie Mahani et al., 2020). Within the Montney 
extents, the Composite Alberta catalogue contains 1,196 events dating from May 16, 1969 to April 16, 
2019. Similarly, the GSC catalogue contains 3,011 events from January 1, 2014 to December 31, 2016. 
The BC OGC/GSC catalogue contains 10,694 events from January 1, 2017 to December 31, 2018. The 
catalogues were individually processed and combined. Each catalogue presented the moment 
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magnitude (MW) when available, with some older events being recorded in local magnitudes (ML). 
Seismic events before January 1, 2000 were also removed. 

In order to remove duplicate seismic events after combining the catalogues, a one-way search was 
conducted on the combined catalogue. Events occurring within 10 seconds and within 10 km of each 
other were flagged as a duplicate, resulting in the removal of 2,298 seismic events. A magnitude of 
completeness analysis was performed using the maximum magnitude method (Wiemer and Wyss, 2000) 
with a Rice Rule binning (Scott, 1979). This reported a maximum magnitude of completeness of 0.25 for 
the KSMMA region, providing a balance between other common binning methods; for example, the 
Sturges (1926) binning method yields a magnitude of completeness of 1 while the Freedman and 
Diaconis (1981) binning method yields a magnitude of completeness of 0.05. Seismic events below the 
KSMMA magnitude of completeness (0.25) were removed to retain granularity in that region of the 
study. This is non-conservative for the NPGMMA, which is reported with a magnitude of completeness 
around 1.4. This yielded a final catalogue with 9,843 events. A b-value analysis using the maximum 
likelihood (Aki, 1965; Bender, 1983), maximum curvature, and goodness of fit methods (Wiemer and 
Wyss, 2000) shows that the earthquake catalogues from the two regions display slightly different b-
values (Figure 2) near 1, however this may be a result of censoring. All plot functions for the b-value 
calculations can be found in the project data repository (Appendix E). 

The catalog provides two targets for our analysis. The first is the seismogenic target, which indicates 
whether a well is associated with seismicity or not. The second is the maximum magnitude of all the 
seismic events associated with each well. For the regression analysis, wells without associated seismicity 
are excluded and the maximum magnitude is encoded as zero. 
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Figure 2. Magnitude distribution plot of the seismic event data from the entire catalogue 
(top), KSMMA (middle), and NPGMMA (bottom). The histogram of events is shown in grey, 
and the cumulative probability mass function is plotted by black dots. The b-value (b) and 
magnitude of completeness (Mc) estimated by the maximum likelihood method (red), the 
goodness-of-fit method (blue) and the maximum curvature method (green) are shown along 
with the coefficient of determination (r). 
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Well and Hydraulic Fracture Completion Data 
The workflow was run on two sets of data – one published by the BC OGC and one sourced from 
geoLOGIC Systems Ltd. (geoLOGIC) through an agreement between geoLOGIC and Geoscience BC. This 
data included basic well information, deviation surveys and production data. It also includes detailed 
completion parameters such as stage-by-stage injected fluid and proppant, stage durations, the start 
and end point of each stage, and instantaneous shut-in pressure (ISIP) where recorded by the operator. 
The same features were extracted from both data sets for consistency, but the actual data varied 
between the two; for example, the wells in each set, the data completeness, and absolute values of 
some of the features were not the same. In general, the geoLOGIC data is slightly more granular and has 
more complete observations. We present results from both data sets, although the analysis can only be 
reproduced for the BC OGC data set due to licensing restrictions that apply to the geoLOGIC data.  

Geological Data 
We included only a limited number of geological factors in the analysis due to the high level of 
uncertainty in the current understanding of critical geological factors such as the stress state in the 
subsurface. Some geological parameters were included as proxies. For example, isotherm is easily 
calculated and can provide a proxy for depth, vertical stress and connection to basement. An example of 
a similar use of geological analogues is given by Pawley et al. (2018), who employed lithium 
concentrations in their study of the geological susceptibility of the Duvernay to induced seismicity. 

The maps utilized in the study included: 

 First order residual on the Paleozoic structure 
 Third order residual on the Paleozoic structure 
 True vertical depth (TVD) to the top of the Montney 
 Top of Montney structure 
 Geothermal gradient 
 Montney isotherm 
 Minimum horizontal stress (Shmin, from Grasby et al., 2012) 
 Vertical stress (SV, from Grasby et al., 2012) 
 Significant faults (see note below) 
 Ratio of pore pressure vs. TVD 

 
These maps were either published in the literature, other public domain technical reports referenced 
above or proprietary Enlighten mapping generated/provided for the use in this report.  

Note on Fault Terminology 

In this study, specific faults within the KSMMA and the NPGMMA are divided into types as classified by 
Berger et al. (2008) and Davies et al. (2018). A more general discussion of fault definitions may be found 
in Ragan (1973) and USGS (2019). Simplified definitions of the faults used in this analysis are: 
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 Normal: steeply inclined faults generally related to tectonic extension in which the hanging wall 
(rock above the fault) has moved in a downward sense relative to the foot wall (rock beneath 
the fault) 

 Listric: faults that show relative displacement as in a normal fault but in which the dip of the 
fault (fault inclination) decreases with depth  

 Thrust: a type of reverse fault (inclined faults created during compression in which the foot wall 
has moved upwards relative to the hanging wall) in which the dip of the fault decreases with 
depth 

 Strike-slip: individual, sub-vertical faults with primarily horizontal movement between fault 
blocks resulting from shear deformation 

 Divergent: strike-slip faults that occur in a set and show divergence as a result of transpression 

Data Preparation 
Well completion data, deviation surveys, geological data, the combined earthquake catalogue and 
production data were loaded and processed in R, an open source programming language, to standardize 
Unique Well Identifiers (UWIs) and geospatial projections. The stage-by-stage completion data for each 
vertical, deviated and horizontal well was aggregated, since the analysis is conducted on a single well 
level. Wells were analyzed individually, meaning that wells on the same pad were not aggregated but 
were treated as separate analysis units. This also meant calculating summary statistics for parameters 
such as injected fluid and proppant and injection rates. On-production dates and production metrics-to-
date were summarized for each well. Geospatial layers and deviation surveys were projected to NAD83 
UTM Zone 10N prior to distance calculations. A 300 m buffer was drawn around each well and mean 
geological parameters extracted. The wells were then seismogenically associated with the combined 
earthquake catalogue and the data combined into a single data set. Information on the data sets after 
data processing and filtering out null values is provided in Table 1. Additional details on the data 
processing can be found in the notebooks included with the source code for this project (Appendix E), 
which can also be used to reproduce the preparation for the BC OGC data set. 

 Total 
Observations 

Original 
Features 

Final Non-Null  
Observations 

Final 
Features 

Seismogenic 
Percentage 

Classification (Induced Seismicity Likelihood) 
BC OGC  2,904 67 1,640 12 27.0% 
geoLOGIC 4,376 79 1,841 12 20.7% 

Regression (Magnitude) 
BC OGC  2,904 67 583 12 100% 
geoLOGIC 4,376 79 518 12 100% 

Table 1. Summary of data set information after processing and filtering out null values. 

The seismic catalogue events were associated to hydraulically fractured wells using the Pawley et al. 
(2018) spatiotemporal filter. This filter associated seismic events with completions if the events 
exceeded a magnitude of 1.1, were within a cluster with at least two other seismic events, occurred 
within 1 day before and 30 days after the end of the completion, and occurred within 5 km of the well or 
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the maximum expected uncertainty for the majority of seismic events. In cases where multiple seismic 
events are associated with the same well, the maximum magnitude of the associated events was taken 
for the regression analysis. A HDBSCAN algorithm (Ester et al., 1996; Hahsler et al., 2017) was used for 
the clustering. The algorithm has three main sensitivities: the cluster size (minpts), the distance from the 
well to events, and the magnitude of completeness used. The effect of these parameters on the number 
of seismogenic events and mean magnitude is illustrated in Figure 3. Overall, the parameters chosen for 
a clustering model provide a balance between overclassification of seismogenic events and reducing the 
magnitude of seismic events available for the statistical analysis.  

 

Figure 3. Sensitivity study results for the HDBSCAN algorithm. The effect of distance (in m), 
magnitude, and the minimum cluster size (minpts) is illustrated against the number of 
seismogenic events identified (y-axis) and the mean magnitude of those seismogenic events 
(colour scale). The mean magnitude increases as the number of seismogenic events 
decrease because more events of lower magnitude are seismogenically associated with a 
particular well. 

III. Analysis 

Analysis Overview 
We used a statistical approach for the analysis, specifically a supervised machine learning workflow with 
feature selection and interpretation techniques. This section provides a discussion of each component 
of the analysis workflow (Figure 4), but additional technical details may be found in Appendix B and the 
notebooks included with the source code for this project (Appendix E). 
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Figure 4. An illustration of the statistical workflow, including the main steps of data loading 
and processing, followed by the two models – seismogenic classification and magnitude 
regression. 

Supervised machine learning creates statistical models that are trained on observed data without 
assumptions on the data generating process (Breiman, 2001). It finds a relationship between a target, or 
a variable of interest (e.g., the magnitude of an induced seismic event), and model features, or variables 
in our data (e.g., injection volume) that explain the variability of the target. The resulting model, which is 
statistical (or empirical) in nature, can be used to explain what is driving the variability of the target, or 
predict the target outcome based on new features. 

In this study, we fit models for two targets – the presence or absence of an associated induced 
seismicity event, and the observed magnitude of an associated induced seismicity event. These two 
models can be treated as nearly independent analyses: a classification model that predicts the presence 
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or absence of induced seismicity, and a regression model that predicts the magnitude of associated 
induced seismicity events. 

The initial data was the same for both workflows (Table 1). Unfortunately, missing values for important 
features reduced the number of wells for analysis.  

Seismogenic Classification 

The classification model provides a likelihood of a well being seismogenic. The log loss is used to train 
the classification model and tune hyperparameters. This metric measures the classification accuracy 
(predicted vs. actual class), quantifying the balance between false positives and false negatives across a 
decision threshold. The log loss score is a good metric for the evaluation of problems with uneven class 
distributions, such as this study where only 25% of the observations present a positive class. 

Magnitude Regression 

The regression model predicts the magnitude of the maximum earthquake for a seismogenic well. The 
average of Root Mean Square Error (RMSE) and Maximum Absolute Error (MAE) was used as a metric 
for evaluating the model and hyperparameter tuning. The regression workflow can only be conducted 
on wells associated with induced seismicity, a criterion that reduced the regression data set below 600 
wells. 

Model Generation 

The MLR (Machine Learning in R, Bischl et al., 2016) framework in R is used for model generation, along 
with several external packages detailed in the R markdown notebooks (Appendix E). The model 
generation approach is shown in Figure 5. It begins with data quality assurance and quality control 
(QA/QC) and outlier removal. Some missing secondary feature values are also imputed to increase the 
number of observations available for model training. Exploratory data analysis and feature selection are 
then used to focus on important features. This is especially important in the current study because of 
the large number of potential features. Filter-based and wrapper-based feature selection techniques are 
then used, followed by model tuning and training. These steps are described below, with a more 
detailed explanation provided in Appendix B. 
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Figure 5. Steps in the generation of the classification and regression models. 

Model Summary 

Four different models were used in the model generation process. Because of the small size of the data 
sets, the models vary in complexity and are compared in order to evaluate the bias-variance trade-off in 
the machine learning workflow. Additional details are provided in the model training section below and 
Appendix B. A summary of the models including a brief description of each is provided in Table 2. 

Model Abbreviation Description 
Generalized  
Linear Model  

GLM Relatively simple model that can encode interdependence 
of features. Classification and regression. 

Classification 
Decision Tree 

CART Simplest tree-based modelling approach, using a single 
pruned decision tree. Classification only. 

Multivariate Adaptive 
Regressive Splines 

MARS Uses multiple linear slopes for each feature to increase 
complexity relative to a GLM. Regression only. 

Extreme Gradient 
Boosting 

XGBoost High complexity ensemble model utilizing a forest of 
decision trees. Classification and regression. 

Table 2. Model summary for the seismic classification and magnitude regression workflows. 

Data QA/QC and Outlier Removal 

An observation is defined as a set of features and target for a single well. Removing observations with 
any missing features (that is with any null value across any of the features) resulted in the removal of 
over half of the observations in each data set. There are also features with outlying values that 
represent data entry errors and non-physical measurements. These outliers were first removed, and 
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observations missing critical features (proppant and fluid volumes for example) were also filtered out. 
Features considered non-critical were imputed with the mean of the data in order to assist with feature 
ranking and selection. These features included sd_treating_mpa, mean_treating_mpa, sd_treating_mpa, 
mean_intervals_per_stage, and sd_breakdown_mpa for the geoLOGIC data and mean_rate_m3_min for 
the BC OGC data. The maximum number of missing values was 48 out of 1640 for mean_rate_m3. The 
imputation limited the number of wells that are removed from the data set prior to exploratory data 
analysis and feature selection and does not affect feature importance. 

Exploratory Data Analysis 

Box plots, scatter plots, correlation plots and principal component analysis were used to visualize the 
relationship between features and the target for the seismogenic classification and magnitude 
regression workflows. 

Box plots were used to visualize the relationship between features and the seismogenic classification. 
Features with different distributions between seismogenic and non-seismogenic wells are more likely to 
be important. An example box plot is shown in Figure 6, where the number of completion stages is 
shown for seismogenic wells in red and for non-seismogenic wells in black. All of the box plots are 
provided in Appendix C. Based on the box plots, potentially important features include horizontal wells 
within 1 km, number of stages, average stage spacing, the mean number of intervals per stage, the total 
fluid injected in each well, the mean injection rate, the fluid intensity, the Paleozoic structure, and the 
top of Montney structure. 

Scatter plots are used to visualize the relationship between features and the maximum earthquake 
magnitude associated with a seismogenic well. An example scatter plot for maximum stage duration is 
shown in Figure 7. All of the scatter plots are provided in Appendix C. The scatter plot shows why a 
relatively complex model is required for predicting the magnitude of induced seismicity, since none of 
the features shows a clear relationship with the target variable. Based on the scatter plots, features that 
may be important in regression include the number of stages, average stage spacing, mean fluid per 
stage, total fluid injected in each well, fluid intensity, mean ISIP, maximum ISIP, and geothermal 
gradient.  

Of the potentially important features identified with the scatter plots, only the number of stages, mean 
fluid per stage and fluid intensity overlap with the features identified with the box plots. It is important 
to note that the features are not actually expected to overlap, since the target and data in each 
workflow differ. The causal variables for whether a well is seismogenic or not may not relate directly to 
whether the induced earthquake is of a significant magnitude. 

A Pearson correlation plot shows the similarity between numerical features. Groups of parameters with 
high correlation are generally assumed to represent the same physical process, at least statistically. This 
suggests that a single feature can statistically represent an entire group of correlated features. Highly 
correlated features can also confound statistical analyses and pose a risk to model interpretation (Pearl, 
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Figure 6. Box plot showing the distribution of the number of completion stages in 
seismogenic wells (red) and non-seismogenic wells (black). The box represents the 
interquartile range (IQR) of the data, with the horizontal line representing the mean. The 
whiskers represent 1.5xIQR above and below the box, with points representing outliers.  

 

        

Figure 7. Scatter plot of TVD to the top of the Montney in meters versus maximum 
earthquake magnitude. 
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2009). The correlation plot for the seismogenic classification features is shown in Figure 8. The 
correlation plot for the magnitude regression features is shown in Figure 9.  Full-size versions of both 
figures are provided in Appendix C.  

The strength of the correlation is denoted both by the shape of the ellipse and colour, with thin ellipses 
and dark colours representing high correlations. Blue is a positive correlation, and red is a negative 
correlation. In general, most of the parameters show a low correlation and the two figures appear very 
similar. The correlation plots show that there are numerous groups of input features with high 
correlation, suggesting that a single parameter from each group can be selected for the final model. The 
groups include: 

• fluid intensity, proppant intensity, total fluid, and total proppant 

• horizontal wells within 1, 5, 10, and 25 km 

• mean fluid per stage, mean proppant per stage, mean stage duration, mean well TVD and mean 
breakdown pressure (moderate correlation) 

• number of stages, average stage length, and average stage spacing 

Principal component analysis (PCA) is a dimensionality reduction technique that can also identify 
important features in the data set (Jollife, 2002; Peres-Neto et al., 2005). It assumes that many of the 
features are correlated with each other and that a linear combination of features can explain the data's 
variance. By recombining the features into principal components and investigating the parameters in the 
first two principal components, one can see a) which parameters are important; b) which parameters 
group together; and c) how many parameters might be needed in a model. A unit circle plot (Figure 10) 
is used to investigate a) and b) by plotting the influence of each original feature in the primary and 
secondary principal components.  A scree plot (Figure 11) is used to explain the variance that can be 
explained by each principal component, helping to answer how many components might be needed in a 
reasonable model (c). The data is standardized using a z-score transformation prior to PCA analysis. Both 
plots are available as full-size versions in Appendix C. 

The unit circle in Figure 10 shows again that many features are correlated with each other, and that the 
data is distributed relatively evenly across features in the first two principle components. This means 
that numerous features will be needed to predict either seismogenic association or magnitude and that 
a complex model will likely be required. The scree plot in Figure 10 shows that a large amount of the 
total variance of the data set can be represented by around 7 or 8 principal components (the elbow in 
the scree curve), providing qualitative guidance on the number of features to consider in a model.  
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Figure 8. Correlation plot of all model features and the seismogenic classification. Thin 
ellipses and dark colours represent higher correlations. Blue is a positive correlation, and red 
is a negative correlation. 
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Figure 9. Correlation plot of all model features and earthquake magnitude. Thin ellipses and 
dark colours represent higher correlations. Blue is a positive correlation, and red is a 
negative correlation. 
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Figure 10. A unit circle plot showing the proportion and weight of each feature in the first 
two principal components. Parameters closer to the edge of the unit circle explain more 
variance. Parameters that are grouped closer together are correlated with each other in 
terms of explaining the first two principal components. 
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Figure 11. A principal component analysis scree plot showing the variance explained by each 
principal component. The ‘elbow’ or peak inflection in the curve is generally construed to 
approximate the optimal number of parameters in a parsimonious model. 

Feature Ranking and Selection 

This study uses a quantitative framework to rank features, followed by a manual selection process based 
on causal groupings of features. There are generally two robust approaches to quantitatively ranking 
feature importance in machine learning workflows to assist with feature selection - filter and wrapper 
methods (Kohavi and John, 1997). Filter methods apply external algorithms to measure the influence of 
each feature on the variance of the data. Wrapper methods iteratively assess model performance using 
random selection of features in order to determine the features that optimize model performance 
against the training data. A brief summary of each method is provided below, with a more technical 
explanation in Appendix B. Multiple models were used for the classification and regression workflows 
with many sequential and random runs per model. This generates a large number of results (see 
Appendix E) that are used to rank features and ultimately select the ones to carry forward into the final 
modeling. In seismogenic classification, features with higher rankings are more influential for 
differentiating seismogenic and non-seismogenic wells. In magnitude regression, features with higher 
rankings carry higher weights for prediction of magnitude, but the weight has no bearing on the model 
coefficients. That is, a higher ranking means that a feature carries a lot of weight and for example, has a 
large absolute univariate slope, but that ranking carries no information regarding the sign of the 
univariate slope. 
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Filter-Based Feature Ranking 

Two statistical tests were used for filter-based feature ranking for both the seismogenic classification 
and magnitude regression workflows: information gain and chi-squared testing. Information gain tests 
the degree to which features share information with the target. Chi-squared testing quantifies the 
dependency of the target on a feature. Filter-based feature ranking methods are model agnostic and 
therefore consistent across all models used. Features with high information gain or chi-squared statistics 
are ranked higher in importance.  

The filter-based results for seismogenic classification are shown in Figure 12 for all features including 
geological features, well information and completion features from the BC OGC data set using the CART 
model. The results between the two methods are in close agreement. Amongst the highest ranked 
geological features in both sets of results are Paleozoic structure, top Montney structure and distance to 
normal faults. Amongst the highest ranked well or completion features are mean TVD of the horizontal 
well section and the number of wells within 1 km. It is clear from both sets of feature rankings that 
geological features dominate over the well and completions features. 

 

Figure 12. Filter-based feature importance for the classification problem. The left panel 
shows the information gain scores. The right panel shows the chi squared scores. Features 
are shown in the same order on both plots. 

The filter-based results for magnitude regression are shown in Figure 13 for all features including 
geological features, well information and completion features from the BC OGC data set using the MARS 
model. The results both rank some of the same geological features highly including, for example, Shmin 
gradient, distance to thrust faults and geothermal gradient. The results do not agree as closely for 
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completion parameters. As with the seismogenic classification feature ranking, geological features 
dominate over well and completions features. 

 

Figure 13. Filter-based feature importance for the regression (maximum magnitude) 
problem. The left panel shows the information gain scores. The right panel shows the chi 
squared scores. Features are shown in the same order on both plots. 

Wrapper-Based Feature Ranking 

Two methods were used for wrapper-based feature ranking. The first was a sequential floating 
backwards search where features are removed and randomly added back in until a selection of models 
with the highest performance is achieved (approximately 1,000 of 50,000 model runs). The second is a 
random search where features are ranked in the best performing models out of a large random set 
(approximately 1,000 of 100,000 model runs). 

An example of the sequential and random wrapper-based results for seismogenic classification is shown 
in Figure 14 for all features including geological features, well information and completions features 
from BC OGC data set using the CART model. While the specific results differ between the two methods, 
in both cases the top ranked features are a combination of geological and well or completions features. 
In general, the sequential results provide a stronger differentiation of features than the random results 
for seismogenic classification. 
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Figure 14. Sequential (top) and random (bottom) wrapper-based feature rankings for the 
classification analysis using a CART model. In each plot, features are shown in order of 
importance in the top 1,000 runs, based on the log loss score. 
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An example of the sequential and random wrapper-based results for magnitude regression is 
shown in Figure 15 for all features including geological features, well information and completions 
features from BC OGC data set using the MARS model. The first observation is that there is low 
differentiation in the sequential feature ranking, which may be an indicator of high 
interdependence of features in the regression analysis and/or poor predictive power of the 
features. The random feature importance may provide a more reliable differentiation in features, 
at least for the example presented. In the random results it is again seen that geological features 
dominate over well or completions features in the rankings.  



Statistical Assessment of Operational Risks for Induced Seismicity from Hydraulic Fracturing in the Montney, 
Northeast BC (Geoscience BC Project 2019-008) – Final Report 

 

© 2020 Enlighten Geoscience Ltd.  29 

 

Figure 15. Sequential (top) and random (bottom) wrapper-based feature importance for the 
regression analysis using a MARS model. In each plot, features are shown in order of 
importance in the top 1,000 runs, based on the mean of maximum absolute error and root 
mean squared error. 
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Discussion and Final Feature Selection 

The filter-based, sequential wrapper-based, and random wrapper-based results were compiled across 
data sets and models for both the classification and regression analyses. The classification analysis, for 
example, had three models (GLM, CART, and XGBoost), each wrapped using the BC OGC and geoLOGIC 
completions feature sets. This resulted in two rankings for filter-based methods (one for each data set 
since filter-based methods are model agnostic), six rankings for sequential wrapper-based methods and 
six rankings for random wrapper-based methods. For a final numerical ranking, a mean rank was 
calculated for each of the three groups, and then a final ranking was calculated by averaging the means. 
The individual model rankings, group rankings and final rankings are all provided in the repository 
accompanying this report (Appendix E).  

The primary goal of this analysis was to try to associate completions parameters with induced seismicity 
risk, either by being related to induced seismic events or related to induced event magnitude. The 
results of the feature rankings across all models were in agreement in one respect, and that was that 
geological features consistently ranked higher than completions features. In order to better highlight the 
relative importance of the completions features only, the entire feature ranking process was run again 
on a set of features that did not include geological features (referred to as “completions features only”). 
The individual and final rankings for the completions features only are also provided in the repository 
accompanying this report (Appendix E). 

For both feature selection runs – all features and completions features only – a considerable amount of 
time was spent manually comparing the ranking results from the different models and data sources (BC 
OGC vs. geoLOGIC completions data) as well as the final numerical rankings. Because of the 
disagreement between individual model rankings, the final rankings did not always reflect how often a 
feature ranked highly in the models themselves. A likely reason for this is interaction between features. 
Amongst the geological features, for example, depth is likely related to geothermal gradient or 
minimum horizontal stress. Amongst the completions parameters, the number of stages is related to 
completed length and stage spacing. To help examine potential feature interactions, the features were 
categorized into groups as listed below (see Appendix A for individual feature definitions). When several 
features from a single group ranked highly, only one or two were eventually selected for the final 
modeling, and it was attempted to include at least one feature from each group. The final feature 
selections are presented in Table 3.  

 Completions fluids 
o calc_fluid_intensity_m3_m 
o calc_total_fluid_m3 
o energizer_bool 
o max_fluid_per_stage_m3 
o max_rate_m3_min 
o mean_fluid_per_stage_m3 
o mean_rate_m3_min 
o sd_fluid_per_stage_m3 
o viscosity_cat.crosslinked 
o viscosity_cat.linear 
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o viscosity_cat.none 
o viscosity_cat.slickwater 

 Proppants 
o calc_proppant_intensity_kg_m 
o calc_total_proppant_t 
o max_proppant_per_stage_t 
o mean_proppant_per_stage_t 
o proppant_cat.ceramic 
o proppant_cat.hybrid 
o proppant_cat.resin.coated 
o proppant_cat.sand 
o sd_proppant_per_stage_t 

 Time 
o frac_duration_days 
o max_stage_duration_min 
o mean_stage_duration_min 

 Well design 
o avg_stage_length 
o avg_stage_spacing 
o calc_completed_length_m 
o n_stages 

 Montney development density 
o horiz_wells_in_1km 
o horiz_wells_in_5km 
o horiz_wells_in_10km 
o horiz_wells_in_25km 
o min_midpoint_dist 

 Distance to faults 
o distance_all_faults_berger_m 
o distance_divergent_faults_berger_m 
o distance_listric_faults_berger_m 
o distance_normal_faults_berger_m 
o distance_strike_slip_faults_berger_m 
o distance_thrust_faults_berger_m 

 Structure 
o paleozoic_structure_mss 
o top_montney_structure_mss 
o third_order_residual_m 

 Temperature 
o geothermal_gradient_degc_km 
o top_montney_isotherm_degc 

 Stress and pressure 
o max_isip_mpa  
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o mean_isip_mpa 
o pressure_depth_ratio_kpa_m  
o sd_isip_mpa 
o shmin_grasby 

 Other 
o mean_TVD 
o max_isip_mpa 
o mean_isip_mpa 
o sd_isip_mpa 
o top_montney_tvd_mss 

 
Completions Geological 
calc_total_fluid_m3 
mean_rate_m3_min 
mean_proppant_per_stage_t 
proppant_cat.hybrid 
horiz_wells_in_5km 
min_midpoint_dist 
calc_completed_length_m 

paleozoic_structure_mss 
geothermal_gradient_degc_km 
shmin_grasby 
distance_listric_faults_berger_m 
distance_normal_faults_berger_m 

Table 3a. Features selected for the final model runs for the seismogenic classification. 

Completions Geological 
calc_total_fluid_m3 
mean_rate_m3_min 
calc_total_proppant_t 
calc_completed_length_m 
n_stages 
min_midpoint_dist 

pressure_depth_ratio_kpa_m 
top_montney_structure_mss 
third_order_residual_m 
geothermal_gradient_degc_km 
distance_listric_faults_berger_m 
distance_normal_faults_berger_m 

Table 3b. Features selected for the final model runs for the magnitude regression. 

The feature selections for the seismogenic classification and seismic event magnitude regression are 
not, and do not have to be, the same, because the two problems are different. That stated, there is 
considerable agreement between the two, both for the completions features and the geological 
features. Common completions features include total fluid volumes and distance between wells, while 
common geological features include geothermal gradient and distance to both listric and normal faults.  

Model Tuning & Training 
Model tuning and training involved using the final, selected features and both data sets (BC OGC and 
geoLOGIC completions parameters) to create tuned models for interpretation and prediction. The 
models used in the feature selection process were run with default hyperparameters, which are the 
settings used to control complexity and model fitting. The default hyperparameters create models with 
complexity that is not well tuned to the data and doesn’t optimally balance bias and variance. Due to 
the small size of the data sets (especially in the case of magnitude regression), the risk of overfitting a 
model is quite high. Overfitting occurs when the model fits the training data very accurately (i.e. has low 
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bias) yet fails to generalize to unseen or new data well (i.e. has high variance). The purpose of model 
training and tuning is to create a model that balances bias and variance appropriately and quantify how 
it performs across varies sets of data. In this study, the following strategies were used to assess and 
reduce overfitting: 

1. Models are trained using five-fold cross validation. Cross validation creates multiple ‘folds’ of 
training data. The hyperparameters are trained to optimize model fit across all the folds, 
sequentially training the model on four of the five folds while evaluating its performance against 
the holdout fold. This is considered to be one of the best ways to avoid overfitting in a model, 
but as is observed in the XGBoost results, can still lead to overfitting when the model complexity 
overwhelms the data set size. 

2. Use bootstrap resampling to quantify a tuned model’s bias and variance. While cross-validation 
helps avoid overfitting, it only provides a single performance metric (the out of sample test 
metric on each fold) for the model. By randomly permuting the data set and train / test split 
while holding the hyperparameters constant, an estimate of the in-sample bias and variance of 
each model is obtained. 

3. Keep a small holdout set to evaluate out-of-sample performance. The irreducible error of 
models can be evaluated in this way; however, the performance is sensitive to which data is 
selected for the holdout. This measure is used as an estimate of how the model will generalize 
to new data, and thus its out of sample variance and irreducible error. For example, the XGBoost 
model has near perfect performance on the cross-validated data, but still performs relatively 
poorly on the holdout set. 

Each model type is discussed briefly below. Additional details on each model along with a description of 
its hyperparameters can be found in Appendix B. 

 Generalized linear models (GLMs) are extensions of multivariate linear regression. In this study, 
GLMs were applied for both seismogenic classification and magnitude regression. For 
classification, a logistic link function was used to transform the continuous output of the GLM to 
a binomial classification (e.g. seismogenic or not seismogenic). 

 Classification and regression trees (CART) are decision trees used for seismogenic classification. 
The tree uses an impurity metric, or the degree of efficiency in separating classes using a 
feature, to create a decision tree. This tree is pruned using a complexity penalty. 

 Multivariate Adaptive Regression Splines (MARS) models are an extension to multivariate linear 
regression, where each surface is allowed to ‘bend’ around knots. These knots provide a form of 
non-linearity where the model can represent more complex surfaces by changing slope through 
each variable. A complexity-penalized optimization is used to select the number of knots. In this 
study, a MARS model was applied to the magnitude regression. 

 An extreme gradient boosted machine (XGBoost) was used for both the seismogenic 
classification and magnitude regression (Friedman, 2001). A gradient boosted machine is a tree-
based ensemble model, similar to the widely used random forest style of models, but with 
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added regularization terms which provides a balance between model complexity (accuracy) and 
overfitting (bias). 

The final features from the feature selection workflow described above were used to subset the data 
into final training data sets for both the BC OGC and geoLOGIC data sets. A total of 12 models were then 
trained, six for seismogenic classification and six for magnitude regression. As detailed above, a Bayesian 
optimization algorithm with five-fold cross validation was used to tune hyperparameters for each 
model. The tuned model was then evaluated using bootstrap resampling and against the small holdout 
data set. The performance of each model can therefore be described using the following metrics:  

• The performance of the tuned model against the training and holdout data sets: This is illustrated 
using a performance versus threshold plot (Figure 16) and receiver operating characteristic (ROC) 
curve (Figure 17) for seismogenic classification and a residual plot (Figure 18) for magnitude 
regression. Plots for each model are provided in the project repository (Appendix E). Single point 
performance metrics are also provided for easier comparison between models and data sets. These 
metrics (MMCE, F1, Log Loss, RMSE, MAE) are summarized in Tables 4 and 5. 

• The performance metrics, bias, and variance determined using bootstrap resampling: By evaluating 
the tuned model against a resampled training set many times, it is possible to estimate how the 
model will perform against another data set that is similar in distribution to the training set.  The 
bias and variance for the seismogenic classification and magnitude regression problems are 
illustrated in Figure 19. The test bias and variance are always higher than the train bias and 
variance, and the discrepancy between the training and test data increases as the data set size 
decreases, illustrated by the difference between the classification and regression results. It should 
be noted that the calculation for bias and variance is substantially different for classification and 
regression problems, which also creates differences when interpreting the plot. The performance of 
the models is summarized in Table 4 for seismogenic classification and Table 5 for magnitude 
regression. 
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Figure 16. An example of a performance versus threshold plot from the CART model applied 
to the BC OGC data set for seismogenic classification. The false positive rate, true positive 
rate, and mean misclassification error of the seismogenic classification model. 

 

Figure 17. An example of a receiver operating characteristic curve from the CART model 
applied to the BC OGC data set for seismogenic classification. The true positive rate is plot 
against the false positive rate as the threshold changes. 
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Figure 18. An example of a residual plot from the GLM model applied to the BC OGC data set 
for magnitude regression. Red lines show the data observations (bottom) and predicted 
values (left). Note the binning bias in the model, shown by the distinct truth values. The blue 
line shows a LOESS average of the fit for a visual aid only.  

 

Figure 19. Summary of the bias and variance in the seismogenic classification (top) and 
magnitude regression (bottom).  



Statistical Assessment of Operational Risks for Induced Seismicity from Hydraulic Fracturing in the Montney, 
Northeast BC (Geoscience BC Project 2019-008) – Final Report 

 

© 2020 Enlighten Geoscience Ltd.  37 

Model GLM GLM CART CART XGBoost XGBoost 
Data set geoLOGIC BC OGC geoLOGIC BC OGC geoLOGIC BCOGC 
Train Bias 0.19 0.26 0.11 0.12 0.00 0.00 
Train Variance 0.19 0.25 0.11 0.12 0.04 0.03 
Holdout Bias 0.19 0.26 0.16 0.17 0.08 0.08 
Holdout Variance 0.19 0.25 0.11 0.12 0.07 0.07 
Train Log Loss 0.39 0.50 0.25 0.31 0.04 0.03 
Train F1 0.90 0.85 0.95 0.93 1.00 1.00 
Train MMCE 0.18 0.25 0.09 0.10 0.00 0.00 
Holdout Log Loss 0.75 0.62 0.85 3.49 0.57 0.69 
Holdout F1 0.78 0.82 0.77 0.81 0.83 0.82 
Holdout MMCE 0.32 0.29 0.31 0.30 0.23 0.27 

Table 4. Summary of model performance for the seismogenic classification analysis. Each 
model and data set are presented with the training and holdout bias and variance. Three 
performance metrics are presented for the training and holdout sets: the log loss score, the 
F1 score, and the mean misclassification error (MMCE).  

Model GLM GLM MARS MARS XGBoost XGBoost 
Data set geoLOGIC BC OGC geoLOGIC BC OGC geoLOGIC BCOGC 
Train Bias 0.341 0.340 0.207 0.198 0.012 0.017 
Train Variance 0.002 0.001 0.044 0.038 0.002 0.004 
Holdout Bias 0.363 0.352 - 0.523 0.160 0.150 
Holdout Variance 0.002 0.001 - 0.304 0.022 0.024 
Train MAE 0.444 0.454 0.329 0.348 0.078 0.093 
Train RMSE 0.581 0.584 0.443 0.467 0.104 0.127 
Holdout MAE 0.466 0.436 0.438 0.346 0.399 0.397 
Holdout RMSE 0.640 0.599 0.607 0.444 0.545 0.487 

Table 5. Summary of model performance for the magnitude regression analysis. Each model 
and data set are presented with the training and holdout bias and variance. Two 
performance metrics are presented for the training and holdout sets: the maximum absolute 
error (MAE) and the root mean squared error (RMSE).  

IV. Model Interpretation 

The objective of model interpretation is to evaluate the global and local behaviour of a single model 
relative to the data used to train that model. The use of multiple datasets and models makes model 
interpretation difficult since the fit of each model to a particular dataset is highly variable when 
employing an empirical (i.e. statistical) framework. This problem is especially apparent when model 
complexity increases, or tree-based methods are used. This section attempts to examine the similarities, 
or lack thereof, between the various models using model interpretation techniques implemented in the 
MLR and IML libraries in R. The techniques include feature importance and feature interaction (Breiman, 
2001), partial dependence and individual conditional expectation plots (Friedman, 2001; Goldstein et al., 
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2015), local interpretable model-agnostic explanations (LIME, Ribeiro et al., 2016) and SHapley Additive 
exPlanations (SHAP, Shapley, 1953; Lundberg and Lee, 2017). A general overview of a model 
interpretation workflow is illustrated in Figure 20. 

 

Figure 20. Illustration of the model interpretation workflow. 

Feature Importance and Interaction 

Permutation-based feature importance was used to interpret the global importance of each input 
feature on the target. Features with higher importance have a higher effect on the model prediction. 
Due to the varying nature of the seismogenic classification models used, it was necessary to use 
different methods to quantify feature importance for each, which makes it difficult to directly compare 
the results between models. The following importance measurements were used for each model: 

 GLM: The coefficients are reported for each feature. In linear models, features with larger 
absolute coefficients have a larger effect on model predictions. It is important to note the 
impact of the input variable scale, since the outcome of each variable is equal to the input value 
times the coefficient. Features with negative coefficients decrease the probability of 
seismogenic classification whereas positive coefficients increase it. 

 CART: The sum of the decrease in impurity for each of the features at each node in the tree is 
reported. Features that cause the largest aggregated decrease in impurity are considered the 
most important. This importance is absolute, that is does not indicate how this feature affects 
the seismogenic classification. 
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 XGBoost: The sum of the relative contribution of each of the features at each node is reported. 
Features that have the largest relative contribution are considered the most important. This 
metric, while scaled between 0 and 1, is expected to be somewhat similar to the impurity 
decrease reported in the CART model. 

For the magnitude regression models, a consistent permutation importance framework was used. The 
maximum absolute error (MAE) of the model is measured before and after shuffling values of individual 
features. The increase in MAE is used as a proxy for the feature’s importance. In the results presented 
below, a value of 1 represents the global model error and larger values indicate more generated error 
and therefore a larger importance. The values provide no indication of how a parameter effects the 
model prediction in absolute terms (i.e. positively or negatively). 

The interaction between features is also quantified, since strongly interacting features can create issues 
with statistical models (Hall, 1999). The interaction measure varies between 0 and 1, with 0 representing 
no interaction and 1 meaning that 100% of the model variance is explained by the interaction between 
two features. Features with a high interaction value indicate that features might be combining to explain 
a latent (non-quantified) parameter, or that variables may be confounding each other. Ideally a model 
would reduce feature interactions, but due to the high degree of correlation between geological and 
completion parameters, this was found to be difficult in the current study.  

The feature importance and interaction plots for the seismogenic classification using all three models on 
both data sets (BC OGC and geoLOGIC completions features) are shown in Figure 21. The first 
observation is that each model generally shows the same results regardless of which completions data 
set was used. The second is that feature interaction tends to mimic feature importance and that when 
models assign a certain feature importance, they may be doing it at the cost of another feature that 
interacts with that feature. This suggests that more complex models (CART and XGBoost) will likely 
experience a higher variance not only due to overfitting, but also due to feature interaction. That said, 
both the CART and XGBoost models place a relatively high importance on Paleozoic structure and 
distance to faults. The GLM model places a high negative importance on minimum horizontal stress and 
high positive importance on geothermal gradient, distance between wells and mean proppant per stage. 

The feature importance and interaction plots for the magnitude regression using all three models on 
both data sets are shown in Figure 22. Most models show a relatively high importance for top of 
Montney structure and distance to faults (normal and thrust). Interactions tend to be higher for 
completions parameters than for geological parameters. As with the classification models, interaction 
tends to mimic importance. It is also worth noting how the XGBoost model balances feature importance 
better than the MARS and GLM models, which tends to focus importance on two or three features. 
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(a) 

 
(b) 

 
(c) 

Figure 21. Feature importance and interaction for the classification models run using, BC 
OGC (left) and geoLOGIC (right) completions data: (a) GLM models, (b) CART models, (c) 
XGBoost models. Different feature importance measures were used: the model coefficients 
are directly shown for the GLM model while the sum of impurity decrease is shown for the 
CART model, and the sum of feature contribution is shown for the XGBoost model. Full-size 
versions of each plot are provided in Appendix C. 
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(a) 

 
(b) 

 
(c) 

Figure 22. Feature importance and interaction for the regression models run using both sets 
of completions features, BC OGC (left) and geoLOGIC (right): (a) GLM models, (b) MARS 
models, (c) XGBoost models. Permutation feature importance is used for all models. Full-size 
versions of each plot are provided in Appendix C. 
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Partial Dependence and Conditional Expectation 
Partial Dependence Plots (PDPs) compare the change in the average predicted value as a particular 
feature (or features) varies over its marginal distribution. This is done by holding all variables constant 
for each observation in the training data set and then applying the unique values of one feature for each 
observation. Individual Conditional Expectation (ICE) curves are an extension of PDPs. Instead of plotting 
the average marginal effect on the response variable, they show the change in the predicted response 
variable for each observation as each predictor variable is varied. Since ICEs plot combinations of 
variables that fall outside of the observed data, they tend to appear chaotic and show high variability 
across the features. They are useful, however, for providing a measure of model variance and potential 
bias on unseen data. 

The PDP and ICE curves for the seismogenic classification problem using the GLM model and the BC OGC 
completions features are provided in Figure 23. The plot illustrates how a seismogenic classification (X1) 
or non-seismogenic classification (X0) changes as each feature changes. Note that because the 
classification is binary, the X1 plots and X0 plots are exact opposites of each other. With the exception of 
hybrid proppant (a categorical variable), each feature increases or decreases the probability of a well 
being seismogenic. Large, non-linear responses are observed with geological features (e.g., Paleozoic 
structure and distance to listric faults). These are compared with relatively muted, linear responses from 
completion parameters (e.g., total fluid volume and horizontal wells within 5 km). More specifically, for 
example, a larger geothermal gradient decreases the probability of a well being seismogenic, whereas a 
larger total injected fluid volume increases the probability. It is also worth noting the rug plots at the 
bottom of each PDP, which shows the distribution of the variables. Extrapolation of a PDP past the data 
(as with the minimum horizontal stress feature) is fraught with interpretation error, as statistical models 
perform poorly at extrapolating past the bounds of observed data. 

Similar plots for the seismogenic classification using the CART and XGBoost models are shown in Figures 
24 and 25, respectively. The CART model shows negligible variability for some parameters, which likely 
indicates that there aren’t any nodes in the tree for that parameter, or that the PDP analysis couldn’t 
permute the feature outside of one or two nodes where it was used. For other parameters it shows 
discrete decision nodes. For example, it appears that the model encodes distance to normal faults using 
two nodes, placing a higher seismogenic potential for wells within 500 and 2500 m from a normal fault. 
The XGBoost model PDPs shows the much higher variability encoded by the ensemble model. This 
variability unfortunately mutes some of the ICE trends, but the PDPs suggest that seismogenic potential 
correlates with an increase in distance from listric faults, decrease in geothermal gradient, increase in 
development density, and increase in total fluid injected. The XGBoost PDPs also demonstrate the much 
more complex response surface of the ensemble model, which can encode many decision nodes for 
each feature. This is one of the reasons ensemble tree models are prone to overfitting. 
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Figure 23. Partial dependence plot (yellow) and individual conditional expectation plots 
(black) for the seismogenic classification using the GLM model and BC OGC completions 
features. Variables are standardized and centered between the two classes. The rug plot at 
the bottom of each PDP plot shows the data distribution of each feature. 
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Figure 24. Partial dependence plot (yellow) and individual conditional expectation plots 
(black) for the seismogenic classification using the CART model and BC OGC completions 
features. Variables are standardized and centered between the two classes. The rug plot at 
the bottom of each PDP plot shows the data distribution of each feature. 

 

 



Statistical Assessment of Operational Risks for Induced Seismicity from Hydraulic Fracturing in the Montney, 
Northeast BC (Geoscience BC Project 2019-008) – Final Report 

 

© 2020 Enlighten Geoscience Ltd.  45 

 

Figure 25. Partial dependence plot (yellow) and individual conditional expectation plots 
(black) for the seismogenic classification using the XGBoost model and BC OGC completions 
features. Variables are standardized and centered between the two classes. The rug plot at 
the bottom of each PDP plot shows the data distribution of each feature. 

The PDPs and ICE curves for the magnitude regression using the BC OGC completions features and the 
GLM, MARS and XGBoost models are provided in Figures 26 to 28. As opposed to the classification PDPs, 
which map a model to a binomial response (0 or 1), the PDPs map a model to a continuous response.  

The response for the GLM model (Figure 26) shows the increase or decrease in magnitude as each 
univariate parameter increases. In a GLM, the sum of these changes provides the final prediction, thus 
the magnitude of each slope provides the importance of each feature. Since the model only encodes a 
single coefficient, there is no variability in the model’s response as a feature is permuted (in other 
words, there are no PDPs for a GLM of a continuous variable). This isn’t the case with the classification 
model shown above because of the logistic link function, which encodes non-linearity in the model 
through a probability-based prediction with a tuned threshold. For the GLM model, total fluid volume, 
total proppant, number of stages, distance between wells third order residual appear to be the most 
importance parameters. Interestingly, the majority of the geological parameters show little influence on 
the model prediction. 

The response for the MARS model is shown in Figure 27. The first observation for this PDP is the large 
variance in the PDP response, which is likely due to a combination of parameters that is well outside of 
observed data. For example, at the extremes of the PDPs calculated completed length predicts a 
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magnitude of -20, and geothermal gradient predicts a magnitude of 7.5. This is an effect of the PDP 
quantification process and does not reflect the model’s predictive performance, but still serves to show 
some of the variability inherent in the MARS model. The PDP/ICE plot does indicate the large influence 
of top of Montney structure and indicates an increasing predicted event magnitude as total fluid and 
total proppant increase, while calculated completed length and third order residual seem to decrease 
the magnitude. 

The response for the XGBoost model in Figure 28 is prone to much less extrapolation error than the 
MARS model, but still shows a relatively high variance. The response surface of this model provides 
several interesting observations. First, the magnitude appears to increase with top of Montney structure 
and decreases with third order residual. Second, it appears that once wells exceed approximately 1.5 km 
in length, the influence of length on magnitude attenuates. The effects of increasing total fluid and 
number of stages are also apparent, and there appears to be an initial increase in magnitude with 
pressure/depth ratio but then the opposite influence occurs.  

 

Figure 26. Partial dependence plot (yellow) for the magnitude regression using the GLM 
model and BC OGC completions features. The rug plot at the bottom of each PDP plot shows 
the data distribution of each feature. 
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Figure 27. Partial dependence plot (yellow) and individual conditional expectation plots 
(black) for the magnitude regression using the MARS model and BC OGC completions 
features. The rug plot at the bottom of each PDP plot shows the data distribution of each 
feature. 
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Figure 28. Partial dependence plot (yellow) and individual conditional expectation plots 
(black) for the magnitude regression using the XGBoost model and BC OGC completions 
features. The rug plot at the bottom of each PDP plot shows the data distribution of each 
feature. 

Local Model Interpretability 

Specific wells can be investigated using local model interpretability techniques. Local interpretable 
model-agnostic explanations (LIME) use a local surrogate model to explain individual predictions 
(Ribeiro et al., 2016). An interpretable model is used so that the influence of each parameter can be 
quantified relative to the model response. The visualization for LIME shows the effect of each feature, 
which is the weight of the feature times the feature value when a linear regression (i.e. GLM) is 
employed. This is directly analogous to the coefficient in a linear model and is subject to interpretation 
bias when the features are not normalized to a standard scale, which is the case for this study. 

SHapley Additive exPlanations (SHAP, Shapley, 1953; Lundberg and Lee, 2017) computes feature 
contributions for single predictions with the Shapley value, an approach from cooperative game theory. 
The ‘fair value’ for each feature is compared to the difference from the well’s prediction and the average 
of the entire data set. The possible combinations of features are analyzed, with a weighted average used 
to determine the final Shapley value. The SHAP plot visualizes the contribution of each feature to the 
model result (phi), with all contributions equalling the difference between the prediction and the 
average of the data set. 
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A comparison of LIME and SHAP results for the magnitude regression in well 100/09-35-081-18W6/00 
(WA 29429)  is provided in Figure 29 for a MARS model. This well was classified as seismogenic and was 
associated with a magnitude 2.7 seismic event by Babaie Mahani et al. (2020). The figure illustrates the 
large discrepancy between the two interpretation methods. LIME effects often show an inverse 
relationship to the SHAP phi values, as is the case with the distance to faults in Figure 29. The SHAP plot 
shows that distance to normal faults decreases the observed magnitude, whereas the LIME Effect shows 
a positive coefficient. This is interpreted as indicating that the further you get from normal faults, the 
higher magnitude event you can expect, all else being equal. It also shows the difficulty in comparing the 
two interpretability approaches. LIME Effects are scale sensitive and therefore can be misleading. Also, 
due to the local surrogate model limitations, the LIME Effects can be highly variable and are generally 
considered less reliable than SHAP values. For this reason, we investigate additional example results 
using SHAP alone, although LIME plots are provided in Appendix C for the cases shown. 

 

Figure 29. A comparison of LIME and SHAP plots for the magnitude regression of well 
100/09-35-081-18W6/00 (WA 29429) using a MARS model with the BC OGC dataset. 

The full suite of SHAP local interpretation results for well 100/09-35-081-18W6/00 is shown in Figures 
30 and 31 for the seismogenic classification and magnitude regression, respectively, using both the BC 
OGC and geoLOGIC completions data. The results illustrate how each model encodes different features 
and uses multiple components to explain each individual observation. This is an indicator of feature 
interaction and model variance. It also shows that each individual case is driven by numerous factors 
and that no single factor drives either seismogenic classification or magnitude regression. Importantly, it 
also illustrates the different results obtained when using different data sets. The classification SHAP 
plots (Figure 30) suggest that the development density, the distance to listric faults, the total fluid 
injected, and the geothermal gradient or Paleozoic structure are seemingly most important for the 
positive seismogenic classification. The results for the magnitude regression (Figure 31) suggest that the 
number of stages, and a variety of structural geology proxies (e.g., Montney structure, third order 
residual and distance to faults) are the largest contributors to an increased magnitude, and several 
factors including, e.g., total proppant and completed length actually contribute to a decrease in 
predicted magnitude. 
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(a) 

 

(b) 

 

(c) 

Figure 30. SHAP plots for the seismogenic classification of well 100/09-35-081-18W6/00 
using the (a) GLM model, (b) CART model and (c) XGBoost model with the BC OGC (left) and 
geoLOGIC (right) completions data. 
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(a) 

 

(b) 

 

(c) 

Figure 31. SHAP plots for the magnitude regression in well 100/09-35-081-18W6/00 using 
the (a) GLM model, (b) MARS model and (c) XGBoost model with the BC OGC (left) and 
geoLOGIC (right) completions data. 
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V. Summary, Discussion and Recommendations 

In this study, 21 to 27% of the horizontal wells in the Montney are associated with anomalous induced 
seismicity, depending on the source of the well data (BC OGC versus geoLOGIC). This value may over-
represent the percentage of wells that induce seismicity due to the duplicate assignment of a relatively 
large induced seismic event to more than one well. Generally, an individual well will only be associated 
to a handful of seismic events (<5), but up to 50 seismic events have been associated with a single well. 
Conversely, multiple wells (especially those drilled from the same pad) can be associated to one or two 
seismic events, which increases the percentage of seismogenic association. 

The results of both the seismogenic classification and the magnitude regression using multiple models 
and two, slightly different datasets clearly illustrate that classifying wells as seismogenic and predicting 
induced event magnitude are highly dependent on several factors, including: 

 The specific data set used, due to differences in the features present and missing values  
 The model used, due to differences in model complexity and the trade-off between bias and 

variance 
 The subset of well, completions and geological features selected for inclusion in the final models 

As a result, the analysis does not single out one or more clearly causal features that are responsible for 
induced seismicity from hydraulic fracturing in the Montney in NEBC. In the examples shown, numerous 
features, both completion-related and geological, explain the results of each individual observation.  

The data sets used were quite small compared to what may be considered “big data” resulting in a high 
risk of model overfitting, particularly in the case of the magnitude regression. Several strategies were 
applied to reduce overfitting. Features that provide a closer link the first principle controls on induced 
seismicity may potentially improve model fit and reduce confounding bias (Pearl, 2009) by focusing the 
model on casual/driving features instead of a proxy for those features. For example, minimum well 
spacing could be serving as a proxy for other, more difficult to measure, parameters such as fluid 
maturity, well deliverability, and reservoir containment. 

In the seismogenic classification, feature interaction tends to mimic feature importance, suggesting that 
feature interactions contribute to a higher model variance, especially for the more complex models. The 
simplest model places a relatively high negative importance on minimum horizontal stress and high 
positive importance on geothermal gradient, distance between wells and mean proppant per stage, 
while the more complex models place a relatively high importance on Paleozoic structure and distance 
to faults. In the magnitude regression, most models show a relatively high importance for top of 
Montney structure and distance to faults (normal and thrust). Interactions tend to be higher for 
completions parameters than for geological parameters.  

An attempt to interpret model results for a specific well (100/09-35-081-18W6/00) highlighted the 
problems of model variance and feature interaction. The classification models suggest that the 
development density, the distance to listric faults, the total fluid injected, and the geothermal gradient 
or Paleozoic structure are seemingly most important for the positive seismogenic classification. The 
results for the magnitude regression suggest that the number of stages, and a variety of structural 
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geology proxies (e.g., Montney structure, third order residual and distance to faults) are the largest 
contributors to an increased magnitude, and several factors including, e.g., total proppant and 
completed length actually contribute to a decrease in predicted magnitude. 

In the feature selection process, geological features repeatedly dominated the feature rankings. In order 
to more clearly understand the importance of completions features, it was necessary to rerun the 
feature selection process excluding the geological features. The final model runs included both types of 
features, and the model results showed significant contributions from both. Deciding which features to 
carry forward into the final modeling could not be achieved by the machine learning workflow alone but 
required a considerable amount of human intervention. There remains a significant opportunity for the 
workflow to be repeated and different final feature sets to be chosen in order to see how the model 
results are affected.   

Previous researchers have also attempted to find factors influencing induced seismicity due to hydraulic 
fracturing in other formations. Fasola et al. (2019) found that, in general, simultaneous completions had 
the highest probability of inducing seismic activity in the Eagle Ford of South Texas. Key contributors to 
the higher probability included effective injection rate, injected volume and number of laterals on a pad. 
Key geologic contributors were proximity to faults and orientation of faults relative to the stress field. 
Pawley et al., (2018) focused on geologic factors in the Duvernay formation in Alberta and found that 
the key factors contributing to the likelihood of inducing a M > 2.5 earthquake were Duvernay 
overpressure, minimum horizontal stress magnitude, proximity to Swan Hills reef margins, lithium 
concentration (a proxy for distance to basement) and natural seismicity rate. A comparison of these 
results to those presented here may indicate that predictors are formation-specific. 
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VII. Appendices 

The following appendices are available as separate documents: 

Appendix A: Feature Definitions 

The filename is 2019-008 Final Report APPENDIX A – Feature Definitions.PDF 

Appendix B: Methodology Details 

The filename is 2019-008 Final Report APPENDIX B – Methodology Details.PDF 
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Appendix C: Full-Size Figures 

This is a collection of individual files in a folder. The folder name is 2019-008 Final Report APPENDIX C – 
Full-size Figures. The file names are self-explanatory. 

Appendix D: Database 

This is a folder containing the input data used in the analysis, provided as comma-separated value (.csv) 
or Microsoft Excel files. The folder name is 2019-008 Final Report APPENDIX D – Database. The file 
names are self-explanatory. 

Appendix E: Github Repository 

The GeoscienceBC_9019-008 Github repository contains all of the data, source code and resulting 
output for the BC OGC completions data set only (the geoLOGIC completions data set is not 
distributable). The code is fully documented and includes data preparation, exploratory data analysis, 
and machine learning model details. The URL to the repository is 
https://github.com/Enlightengeo/GeoscienceBC_2019-008, and a compressed archive of the repository 
was delivered with this report. The online repository will be maintained for at least one year after 
delivery of this report. 
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