Porphyry Districts of British Columbia Atlas Series

- Porphyry Districts of British Columbia Atlas Series

 MOUNT POLLEY

 MOUNT POLLEY}

A geo-exploration atlas of the Mount Polley porphyry copper-gold district

Compiled by F.A.M. Devine ${ }^{1}$, P. Kowalczyk², D. R. Heberlein³ and W. Kilby ${ }^{4}$
with contributions by C. Rees ${ }^{5}$

In partnership with Imperial Metals Corporation

2016 by Geoscience BC
All rights reserved. Electronic edition published 2016
This publication is also available, free of charge, as colour digital files in Adobe Acrobat \circledR^{\circledR} PDF format from the Geoscience BC website: http://www.geosciencebc.com/s/Data Releases.asp

When using information from this publication in other publications or presentations, due acknowledgement should be given to original data sources and Geoscience BC

The recommended reference for this publication is as follows:
Devine, F.A.M., Kowalczyk, P., Heberlein, D.R. and Kilby, W. (2016): A geo-exploration atlas of the Mount
Polley porphyry copper-gold district, south-central British Columbia; Geoscience BC, Report 2016-10.

Author affiliations:

${ }^{1}$ Merlin Geoscience Inc., Geoscience BC
2 Consulting Geophysicist, Geoscience BC
${ }^{3}$ Heberlein Geoconsulting, Geoscience BC
${ }^{4}$ CalData Ltd., Victoria, BC
${ }^{5}$ Imperial Metals Corporation

Cover photo: Mount Polley mine, view southwest, August 2013; Credit: Norm Graham

CONTENTS

INTRODUCTION
HISTORY OF EXPLORATION AND DEVELOPMENT
REGIONAL GEOLOGY
DISTRICT GEOLOGY
ACKNOWLEDGEMENTS
DATA AVAILABILITYRegional Overview 1:250,000
BASEMAPS AND IMAGERY
GEOPHYSICS
1.1 Satellite Imagery (Google Earth)
1.3 Gravity: Bouguer

GEOLOGY
Gravity: Bouguer Horizontal Gradient
1.5 Magnetics: Residual Magnetic Intensity

2 Regional Bedrock Geology
1.6 Magnetics: First Vertical Derivative
1.7 Radiometrics: \% Potassium
1.8 Radiometrics: K / eTh Ratio

Radiometrics: KTU/RGB Ternary Diagram

District Overview 1:50,000 \& 1:100,000

BASEMAPS AND IMAGERY
2.1 Topographic Map

Google Earth - SPOT Satellite Image
SURFACE GEOCHEMISTRY
Indicator Minerals
Landsat8 - Natural Colour Image
5.1 Gold, Chalcopyrite, Pyrite, Arsenopyrite

ASTER - Pseudo Natural Colour Image
5.2 Jarosite, Andradite, Epidote, Apatite

Landsat8 - Vegetation Index

GEOLOGY
Commodity Elements
Copper (Cu), Molybdenum (MO), Gold (Au), Silver (Ag)
5.4 Pathfinder Elements (Base Metals)

Zinc (Zn), Iron (Fe), Lead (Pb), Nickel (Ni)
5.5 Pathfinder Elements

Mercury (Hg), Palladium (Pd), Antimony (Sb), Tungsten (W)

Stream and Lake Sediment Geochemistry
5.6 Commodity Elements

Molybdenum (Mo), Copper (Cu), Gold (Au), Silver (Ag)
5.7 Pathfinder Elements

Arsenic (As), Antimony (Sb), Zinc (Zn), Mercury (Hg)

District Detail 1:20,000

BASEMAPS AND IMAGERY
$6.1 \quad 1985$ orthophote
EOCHEMISTRY
Soil Geochemistry
GEOLOGY
Bedrock Geology: Alteration and Mineralization
Gold (Au)
Mineralization - Copper Grade Contours
Silver (Ag)
Mineralization - Gold Grade Contours
Arsenic (As)
GEOPHYSICS (Northeast zone)
Molybdenum (Mo)
Chromium (Cr)
Magnetics (Airborne): Residual Magnetic Intensity
Nickel (Ni)
Magnetics (Airborne): First Vertical Derivative
Cobalt (Co)
Magnetics (Ground): Total Magnetic Intensity

Magnetics (Ground over Airborne): Total Magnetic Intensity
IP (Northeast zone): Chargeability
IP (Northeast zone): Resistivity

Porphyry Districts of British Columbia Atlas Series
 MOUNT POLLEY
 A geo-exploration atlas of the Mount Polley porphyry copper-gold distric

INTRODUCTION

The Mount Polley district in central British Columbia is associated with a Late Triassic alkalic intrusive complex, part of the Quesnel volcanic-arc terrane (Figure
1). Copper-gold (-silver) mineralization occurs within and around hydrothermalbreccia bodies, as well as within minor skarn development in coeval volcanic rocks surrounding the intrusive complex. In the first 15 years of mining by Imperial Metals Corporation, between 1997 and 2012, the district has produced 452 million pounds of copper, 695000 ounces of gold, and 2.2 million ounces of silver from 80 million onnes of ore milled (Rees, 2013).
The intrusive complex and the slightly older volcanic rocks that immediately surround it form a district measuring roughly 6 km long by 3 km wide. Production has been predominantly from the central Cariboo-Bell-Springer area, which has been mined through the development of three pits that will eventually expand into a single large pit by the time planned mining is completed. This main area is hosted within the outlying zones within and immediately peripheral to the intrusive rocks.
After it was first staked in 1964, the main part of the district existed as a single property, then known as the Cariboo-Bell. Early exploration eforts ge eraly had a Inc. and then in 1988 when Imperial Metals took over exploration and generated important discoveries, which eventually led to the opening of the mill and initial mining in 1997 (Figure 2). Exploration has been ongoing throughout production, both in the immediate pit areas and in other parts of the district (Imperial Metals Corporation, 2013). It was through this continuing exploration that the high-grade Northeast zone (in 2003) and other peripheral deposits, up to 2 km from the core Mount Polley (Imperial Metals Corporation, 2013).
The landscape around Mount Polley is characterized by rolling topography and moderate relief with relatively continuous forest cover that has now been largely initial vegetative and glacial cover, early exploration efforts used ground geophysical surveys and surface geochemical methods in addition to prospecting. In hindsight, most mineral zones were discovered by prospecting, geological mapping and surface trenching, whereas geophysics and geochemistry have played an important but secondary role (Rees, 2013).
With the highly successful exploration history at Mount Polley, and with the delineation of several orebodies through years of mining and drilling, there is an pportunity to look back to the early exploration data and see what worked, and what did not, in indicating the presence of buried mineralization in areas that now have defined resources. This atlas combines the most up-to-date geological mapping in
the district (Rees et al., 2014) with available exploration datasets from historical geophysical and surface geochemical surveys. Maps are at scales of 1:250 000 1:50 000 and 1:20 000, allowing comparison between the regional and the more specific district-scale features that characterize Mount Polley.

Figure 2. View looking east over Trio Lake (foreground), Bootiack Lake
mine, showing the well-vegetated landscape with poor bedrock exposur
1 .

HISTORY OF EXPLORATION AND DEVELOPMENT

In 1963, the Mount Polley area was heavily timbered with released by the federal and provincial governments, showed a magnetic anomaly to the west of Mount Polley. Follow-up prospecting identified chalcopyrite, pyrite and magnetite associated with potassic alteration in limited exposure (Bacon, 965; Rees, 2013). The area was staked by MastodonHighland Bell Mines Ltd. in partnership with Leitch Gold Mines Ltd. (Figure 3). A new company, Cariboo-Bell Copper results from surface trenching, soil geochemistry and groundmagnetic survey results.
Exploration work from 1966 to 1970 involved drilling and magnetic, seismic and IP surveys. Teck Corporation assumed
control in 1969 and continued work on the property in the

1970s. Highland-Crow Resources Ltd., an affiliate of Teck, in 1977.
The Cariboo-Bell property, as it was known at that time encompassed an area including the majority of what became
known as the Mount Polley alkalic intrusive complex, which generally defines the Mount Polley district. In 1981, E\&B Explorations Inc. optioned the property from Highland-Crow and acquired a 100% interest in 1982. With joint-venture partners Imperial Metals and Geomex Partnerships, they carried ou six consecutive years of exploration until 1987, in part focused at the district scale and involving geological mapping, surface geochemistry, VLF-EM and IP surveys, and core and rotary
drilling. This work included a soil survey comprising 4773 samples collected on a grid that covered a large part of the district. 1978: Highland- $\begin{aligned} & \text { 2003: Discovery of } \\ & \text { Crow, TTek } \\ & \text { affiliate, assumes }\end{aligned} \begin{aligned} & \text { 2004: A new feasibility 2005: Mining begins in } \\ & \text { the prevade mineralization in } \\ & \text { study and ore reserve unknewn } \\ & \text { is }\end{aligned}$ the Bell and Wight pits. arfiliate, assumes the previously unknown
control. lercus-
sion driling in
Northeast zone. Imperial Northeast zone. Imperial M
Corp. drills the first deep exploratory hole under the
Springer zone and intersect strong copper grades
500 metres depth.
aeromagnetic survey ove
an area
Polley

1981: E\&B
Explorations Inc.
options the property.
1982: E\&B acquires
100% interest in the property. Continues work with joint-vent partners Imperial
Metals Corp. and Geomex Partnersh

1982-1987: E\&B
completes soil
1988-1990: Impe
Metals conducts
geochemistry surveys, Mexplorationd progran magnetic, VLF-EM and including geological mapping, and core driling and bulk and rotary driling. \quad sampling from surface

1990: Positive feasibility 1990: Positive feas Wright Engineers, based on a 5 million tonne per year plant.
Geomex Partnershes with Geomex Partnerships and
purchases all remaining interest in the property.

1994: Gibraltar Mines 1994: Gibraltar Min
Ltt. drills several holes under option agreement with
Imperial, declines Imperial, declines
further participation 1995-1996: Imperia Metals continues delineation of targets condu
work.

Porphyry Districts of British Columbia Atlas Series
 MOUNT POLLEY

adjacent to the Springer and C2 zones. A titan-24 deep-penetrating IP-magnetotelluric survey was conducted in 2009 to explore fo blind sulphide targets (Imperial Metals Corporation, 2013). In 2010
underground-development exploration started on the Northeast zone beneath the Wight pit and on the Boundary zone; underground mining of the Boundary zone began in 2013.
Most recent exploration work at Mount Polley has included exploration beneath the Cariboo pit, continued underground drilling
and exploration on the Boundary zone, and exploration of early stage targets including the Junction and Quarry zones.

REGIONAL GEOLOGY

The Mount Polley porphyry copper-gold system occurs within the Quesnel accreted-arc terrane, in the Cariboo region of south oo Early Mesozoic arc-volcanic, plutonic and sedimentary rocks, the majority of which form the Late Triassic to Early Jurassic magmatic arc complex that dominates the Quesnel terrane (Logan and Mihalynuk, 2005). Across faults to the west are accreted rocks of the Cache Creek terrane, the Paleozoic to Mesozoic remnants of the subduction-accretionary complex formed during development of he Quesnel arc. Across west-dipping thrust faults to the east of the Quesnel terrane are older rocks with pericratonic affinities,
In southern British Columbia, the Quesnel arc is an isotopically and geochemically primitive volcanic complex that is characterized by 2006). In the area of Mount Polley, the arc is dominated by Late

Triassic Na - and K-rich submarine to subaerial volcanic rocks, part of the Nicola Group, and cogenetic alkaline intrusions (Logan and northwest-trending belt with a simplified lithostratigraphic division a lower fine-grained sedimentary succession and an upper volcanic succession of alkalic affinity. The lower sedimentary succession of fine-grained quartzose rocks grading upward into basal volcanic units is mapped on both the east and west sides of the centra volcanic domain (Panteleyev et al., 1996), with opposing inward dips to the sedimentary units defining the Quesnel Trough (Roddick et al., 1967; Panteleyev et al., 1996). The central volcanic domain
consists of augite-phyric basalt to basaltic andesite flows, breccia and volcaniclastic units with an estimated thickness of $5-6.5 \mathrm{~km}$ (Rees, 1987; Panteleyev et al., 1996)
The Mount Polley intrusive complex is a latest Triassic, alkalic intrusive centre that was emplaced into the Quesnel arc during the later stages of arc development. The porphyritic diorite to alkaline volcanism within the Quesnel arc and are interpreted to be cogenetic (Logan and Bath, 2006). They are dated at ca. 205 Ma (Mortensen et al., 1995), part of the latest Triassic pulse of alkalic magmatism and associated copper-gold mineralization that is seen within the Mount Polley intrusive complex is closely associated with magmatic-hydrothermal breccia bodies within the intrusive complex (Rees, 2013). The Bootjack stock, immediately south of the Moun Polley intrusive complex, is another Late Triassic alkalic intrusive body, but it is relatively unmineralized. It is a silica-undersaturated layered nepheline syenite pluton (Fraser et al., 1995) that is slightly younger but within error (200-202 Ma, Mortensen et al., 1995) of the is derived from a similar magmatic source (Bath and Logan, 2006). A period of uplift and erosion marked the end of the prolific Late he Quesel orc. When arc the axis of arc magmatism and mainly calcalkaline volcanism had shifted eastward (Logan and Bath, 2006). In the Mount Polley region, the Triassic to Jurassic uplift is marked by an unconformity, expose immediately north of the complex, that is overlain by conglomeratic rocks that include monzonite clasts interpreted to be derived from the Mount Polley intrusive complex (Logan and Minalynuk, 2005 been dated at 197 Ma (Logan and Mihalynuk, 2005), demonstrating that the Mount Polley complex was exposed at surface in the Early Jurassic. Other Early Jurassic sedimentary rocks overlying the Late Triassic stratigraphy are preserved sporadically within the Moun Polley region, most abundantly to the west and east of the volcanic

The present-day regional map pattern shows that the area around the Mount Polley intrusive complex is a broad synform within the Quesnel arc Triassic and Jurassic volcanic strata that plunges 20 to the north-northwest (Logan and Mihalynuk, 2005). This is similar Trough. Using the detail within the Mount Polley district, Watforn (2013) also showed that the intrusive complex is tilted as much a 35° to the northwest. This regional deformation may be attributed to he accretion of the Quesnel arc in the Middle Jurassic. Other more recent deformation, including offsets along high-angle faults through the region, is attributed to extension in the Eocene (Wafforn, 2013).

DISTRICT GEOLOGY

The Mount Polley intrusive complex (MPIC) is a Late Triassic suite of marginally silica-undersaturated alkalic intrusions and related hydrothermal breccias emplaced into slightly older (Late Triassic) arc volcanic rocks of the Nicola Group; it hosts the Mount Poiley coppe gold porphyry mineralization (Rees, 2013). The complex forms a 3 km
Magmatic rocks that form the MPIC range from diorite to monzonite, with the older phases being more mafic and transitioning to more et al., 2014) Simic compositions with time (Rees, 2013; Ree progression to porphyritic intrusions over the course of emplacement. A plagioclase-phyric monzodiorite to monzonite composite uni forms the bulk of the complex and predates mineralization, while an important younger phase is a K-feldspar-megacrystic unit occurring as volumetrically minor dikes that are inferred to be most closely
related to mineralization. Clasts of porphyritic intrusive phases in breccias, some with fluidal clast margins (Figure 4a; Pass, 2010) and breccias with porphyritic igneous cement demonstrate a close link between the later stages of magmatism, brecciation and mineralization.
Hydrothermal breccias are associated with the main zones of mineralization (Rees, 2013; Rees et al., 2014). Several breccia types are recognized; they are defined based on clast type, transportation minalrix material, and include highly transported igneous- and 'crackle breccias' Overprinting alteration is comman developed completely texture destructive. Alteration in the district is complex including overprinting assemblages consisting of secondary biotite K-feldspar, magnetite, albite, actinolite and garnet, as well as more The core of the system is dominated by potassic-sodic and calc-
potassic assemblages, and local skarn alteration. Similar alteration is widespread throughout the MPIC but with lesser intensity. zones (Figure 4a, c) caused by fine-grained inclusions of hematite in K-feldspar. Marginal propylitic alteration (epidote and pyrite) dominates along the southern fringe of the MPIC, near the contac with the Nicola Group hostrocks.
There are two main styles of economic mineralization in the district (Rees, 2013). Porphyry-style, disseminated and fracture-controlled chalcopyrite with minor bornite in the core of the MPIC is hosted in hydrothermal breccias and intrusions, and is associated with the mos and and gold grades are low to moderate but have a similar distribution (Figure 5). The secory high sade ofiated with magmatic-hydrotherma breccias, as bornite-chalcopyrite breccia cement and fine to coars vein stockworks. This second style occurs in the northern part of the system, in the Northeast zone and associated areas, across the Green Giant fault; it is presumed to represent a structurally higher part of the system (Rees, 2013).
The MPIC and associated mineralization has been tilted as much as 35° to the northwest (Wafforn, 2013) and has also been dissected by several important, through-going faults. The north-trending faults through the main part of the system have a west-vergent revers trending faults in the north have a north-side-down sense displacement (Wafforn, 2013)

REFERENCES

Bacon, W.R. (1965): Geological, geophysical and geochemical report on the B.J.J.
V groups, Mastodon-Highland Bell Mines Ltd: BC Ministry of Energy and Mine
 Bath, A.B., and Logan, J.M. (2000): Petrography and geochemistry of the Late Triassi
Bootiack stock (NTS $093 A / 12$) south-central British Columbia; in Geological Fieldww Bootjack stock (NTS 093A/12), south-central British Columbia;
2005, BC Ministry of Energy and Mines, Paper 2006-1, p. $5-19$
BC Geological Survey (2015): MINFILE BC mineral deposits database; BC Ministry of
Energy and Mines, BC Geoogocical Survey, URL ehtpp//minfile.caa IJanuary 2016]. Fraser, T.M., Stanley, C.R., Nikic, Z.T., Pesalj, R. and Gorc, D. (1995): The Mou
 Special Volume 46, p. 609-622
Gillstrom, G. (2004): Mount Polley mine 2004 feasibility study;
for Imperial Metals Corporation, dated August $1,2004,145$ p.
Inperial Metals Corporation (2013): 2012 Annual Intormation Form; N1 51-102 Annua Imperial Metals Corporation (2014): Annual Information Form for the year ended
December 31, 2013; N1 51 -102 Annual Information Form document, filed March 31 , December
$2014,53 \mathrm{p}$.
Logan J.M. and Bath, A.B. (2006): Geochemistry of Nicola Group basalt from the

Logan, J.M. and Minalynuk, M.G. (2005): Regional geology and setting of the Cariboo
Bell, Springer and Northeast porphyry Cu-Au zones at Mount Polley, south-central British

Mortensen, J.K., Ghosh, D.K. and Ferri. F. (1995): U.-Pb geochronology of intrusive rock
 Deposits of the Northwestern
Special Volume 46, p. 142-158.
Panteleyev, A., Bailey, D.G., Bloodgood, M.A. and Hancock, K.D. (1996): Geology and mineral deposits of the Quesnel River-Horsefly map area, central Quesnel Itrough
Brtish Columbia (NTS $93 A / 5,6,7,11,12,13 ; 93 B / 9,16 ; 93 G / 1 / 93 H / 4)$; BC Ministry o I, Survey, Builetin 97,156 p.
Pass, H.E. (2010): Breccia-hosted chemical and mineralogical zonation patterns of
the Northeast Zone, Mt. Polley Cu-Ag-Au alkalic porphyry deposit, British Columbia, Canada; Ph.D. thesis, University of Tasmania, 276 p.
Rees, C.J. (1987):The Intermontane-Omineca belt boundary in the Quesnel LLake area,
east-central British Columbia: tectonic implications based in on geology, structure and
paleomagnetism: Ph.D. thesis, Carieton Univerity, 421 p . Rees, C. (2013): The Mount Polley Cu-Au porphyry deposit, south-central British
Columbia, Canada; in Porphyry Systems of Central and Southern BC, J.M. Logan and ook 44, p. 67-98. Rees, C., Gillstrom, G., Ferreira, L., Biornson, L. and Taylor, C. (2014): Geology of the
Mount
Colthey comsisieport2014-08.asp> January 2016.
Roddick, J.A., Wheeler, J.O., Gabrielse, H. and Souther, J.G. (1967): Age and nature of
the Canadian part of the Circum-Pacific Orogenic Bet, Tectonophysics, v. 4, p. $319-337$ Wafforn, S.R. (2013): Structural geology of the Mount Polley Cu-Au district, south-centra . M.

ACKNOWLEDGEMENTS

The authors thank S . Robertson of Imperial Metals Corporation for his support and follow-through on the project. Thanks also go to imperial Metals for their agreement to release historical exploration data as part of this atlas. The databases that are managed by the British Columbia Geological Survey (BCGS) and the Geologica compilation. The decades of original geoscience and quality work in British Columbia by the BCGS and GSC are essential to this produc The presentation of the more detailed geology of the Mount Polley area is drawn almost exclusively from the compilations and article by C. Rees. His contributions to this atlas in the form of advice an editing are also gratefully acknowledged. Finally, F. Blaine is thanked

DATA AVAILABILITY

This Publication
The data layers presented in this publication are available in digital form as a GIS package downloadable from the Geoscience BC website. Data for the Mount Polley district have been compiled from various public and company sources. geological mapping have not been modified: linework is presented as originally published, although the presentation style of various features may be unique to this atlas. In other cases (e.g., geochemical and geophysical data), new data layers generated from the original data are presented, such as organized geochemical data files and maps, geophysical maps and inverted IP sections, and mapping of interpreted structural herein are provided in the compiled GIS package, available for download from the Geoscience BC website (Report 2016-10).

Figure 6. Central Cariboo region showing the location of the Mount Polley mine and
tiles that cover the area

Digital Elevation Data
Canadian Digital Elevation Data (CDED) at 1:50 000 scale are used in several maps within this atlas. The data are delivered in iles that correspond to eastern and western halves of the NTS tiles (Figure 6), and are available through the GeoGratis portal (GeoBasee®, 2015). The data are derived from hypsographic and hydrographic elements within the National Topographic Data Base, as well as other positional data. The grid spacing of the
elevation data varies with latitude; in the Mount Polley region, the spacing is approximately 23 by 13 m , based on data points collected from existing topographic map sources.
GeoBase® (2015). Canadian digital elevation data; Natural Resources Canada, URL <htp://geogratis.gc.ca/api/en/rrcan-rncan/ess-
sst/3A537B2D-7058-FCED-8DOB-76452EC9DO1F.html>
[January

Mineral Occurrence Data
The BC Geological Survey maintains an inventory of geological, location and economic information on over 14340 metallic, in British Columbia. It is delivered publicly via the BC MINFILE database (BC Geological Survey, 2015). The database is active, with new occurrences being added through review of mineral assessment reports, recent publications, press releases and company websites.
BC Geological Survey (2015): MINFILE BC mineral deposits database;
BC Ministry of Energy and Mines, URL <http://minfile.gov.bc.cal/ [January 2016].

Imagery

At Mount Polley, various image sources are available depending on the zoom factor, ranging from satellite imagery to aerial photographs. The detailed imagery is from airborne sources rather than satellite. The vintage, quality and availability of imagery will change depending on the area of BC being viewed. satellite imagery database. It is available for viewing through the Google Earth ${ }^{\text {TM }}$ viewer and for download using Google Earth Pro. Copyright restrictions apply to Google Earth images for many end-user applications.

Historical Airphotos
The 1985 airphoto mosaic, presented to accompany the 1:20 000 scale maps of the 1986 soil geochemistry survey, is compiled from 12 original airphotos acquired from the BC airphoto nd compiled ina images were purchased from GeoBC (2013) of the individual scanned images, followed by orthorectification using Shuttle Radar Topography Mission (SRTM) digital terrain modelling data
GeoBC (2013): British Columbia airphoto database; BC Ministry of Agriculture and Lands, Integrated Land Management Bureau, scale
1:15 000, flight lines BCC353 (photos 154-157 and 192-195) and 1:15 000, flight lines BCC
BCC 355 (photos $016-019$).

Remote Sensing
Remote sensing data from the following sources and sensors were collected and analyzed for the Mount Polley district:

Landsat 8

Landsat 8 began operation on May 30, 2013, providing improved sensor capabilities over previous Landsat missions (e.g. increased sensitivity, adjusted band positions and decreased bandwidths). The imagery provides ten 30 m multispectra channels and one 15 m panchromatic band
on July 1,2013 at 19:08 GMT 9:08 GM

Imagery can be downloaded for free from http://glovis.usgs.gov
[January 2016].
Hyperion
Hyperion, the only spaceborne hyperspectral-image sensor available, is onboard the NASA EO-1 satellite. The Hyperion to $2.5 \mu \mathrm{~m}$) with a 30 m resolution. It can capture a 7.5 by 100 km land area per image and provide detailed spectral mapping across all 220 channels with high radiometric accuracy. Coverage was available for part of the Mount Poliey area: the URL <http://eoo1. usgs. gov/sensors> [January 201 Imagery can be downloaded for free from http://glovis.usgs.gov ASTER
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument onboard Terra, a satellite launched in December 1999 as a collaborative effort between NASA, Japan's Ministry of Economy, Trade and
Industry and Japan Space Systems. ASTER captures high-spatial-resolution data in 14 bands, from the visible to the thermal infrared wavelengths, and provides stereo-viewing capability for creation of digital-elevation models.
The ASTER imagery available for the Mount Polley area was collected on July 25, 2004 at 19:17 GMT.
URL <http:///asterweb.jpl. nasa.gov/indexr.asp> [January 2016].
Selected imagery for BC can be downloaded for free from Imagery in or touching United States lands can be downloaded for free Imagery in or touching United States lands cat
from <http://golvis. usgs.gov [January 2016].
Imagery outside the United States can be
Imagery outside the United States can be purchased from Earth
Remote Sensing Data Analysis Center (ERSDAC) at -http/Igds ersdac ispacesystems.or.jp/?lang=en> [January 2016]

Topographic Data Layers
Topographic vector data from the National Topographic Data Base (NTDB) are available for download at no charge from The maps within the National Topographic System (NTS) are available in two standard scales: 1:250 000 and 1:50 000. The 1:50 000 series is available in a variety of raster and vector formats; the vector files are currently delivered as the CanVec product, which conforms to international geomatics standards. The map tiles applicable to the Mount Polley region are shown in Figure 6
NTDB 1:250 000 scale
Natural Resources Canada (2015): National Topographic Data Base,
tiles 093K, 093F; Natural Resources Canada, Earth Sciences Sector, tiles 093K, o93F; Natural Resources Canada, Earth Sciences Sector Centre for Topogra
[January 2016].
CanVec 1:50 000 scale

Map tile

093 A05 Beaver Creek 093A06 Horsefly 093A11 Spanish Lake (published 2013) 093A12 Likely (published 2013) Natural Resources Canada (2013): CanVec, Canada, 093K01-08 and Fo9-16; Natural Resources Canada, Earth Sciences Sector, Mapping
Information Branch, Centre for Topographic Information, URL <htp:/I geogratis.gc.ca> [January, 2016]

Digital Road Atlas

Additional vector files for road data are from the BC Digital Road It is delivered through Geon
GeoBC (2013): British Columbia Digital Road Atlas, URL < http://
Bedrock Geological Mapping Bedrock geological mapping is presented in this atlas at three
different scales for the Mount Polley area, each map having been derived from a different source:

1:250 000 scale

The QUEST bedrock geology map (Logan et al, 2010) was published in 2010 as a highly collaborative map that provided area.
Logan, J.M., Schiarizza, P., Struik, L.C., Barnett, C., Nelson, J.L.
Kowalczyk, P., Ferri, F., Mhallyuk Lewalczyk, P., Ferri, F., Mihalynuk, M.G., Thomas, M.D., Gammon, P.,
Lett, R., Jackaman, W., and Ferbey, T. (2010): : Bedrock geology of the
QUEST map area, central British Columbia: Gescien QUEST map area, central British Columbia; Geoscience BC, Report Survey of Canada, Open Fiie e 6e76, scale 1:500 0000, URL <http://www.
geosciencebc.com/s/2010-005.asp> [January 2016].
1.50000 scale

Logan et al. (2007) published a geology map for the Mount oiley area that included new mapping as well as a review published and new geochronology data is also included.
Logan, J.M., Bath, A.B., Mihalynuk, M.G., Rees, C.J., Ullicich, T.D., and
Friedman, R.M. (2007): Regional geology of the Mount Polley area, central British Columbia; BC Ministry of Energy and Mines, Geoscience Map 2007-1, scale $1: 50$ 000, URL <etha/p//ww.empr.gov.bc.ca/
Mining/Geoscience/PublicationsCatalogue/Maps/Geosciencel/aps/ Pages/2007-1.aspx> [January 2016].

1:20 000 scale

Rees et al. (2014) published a detailed, district-scale geology
map of the Mount Polley area that includes lithology, alteration and mineralization information.
Rees, C., Gillstrom, G., Ferreira, L., Bjornson, L. and Taylor, C.
(2014): Geology of the Mount Polley intrusive complex (final version);
Geoscience BC, Report 2014-08, URL <http://www.geosciencebc. Geoscience BC, Report 2014-08, URL
com/s/Report2014-08.asp> [January 2016]

Surficial Geological Mapping

Surficial geological mapping of the Mount Polley region presented herein is from the 2015 map of the Bootjack Mountain (Hashmi et al., 2015). Additional mapping is available from memperial Metals Corporation data (provided in the digital and Mines Assessment Report 28270 (McAndless and Taylor, 2006). They reported on a mapping and till sampling program by Imperial Metals conducted in 2005 . The surficial geological An earlier $1: 50000$ scale surficial geology map is also available for NTS map area 093A (Bichler and Bobrowsky, 2003), Measurements of features that indicate the ice-flow direction in this area have been compiled in a database by Ferbey and Arnold (2013).
Bichler, A.J. and Bobrowsky, P.T. (2003): Quaternary geology of the
Hydraulic map sheet (NTS 093A/12), British Columbia; BC Ministry Hydraulic map sheet (NTS 093A/12), British Columbia; BC Ministry
of Energy and Mines, Open File 2003-7, $1: 50000$ scale, URL <http:// of Energy and Mines, Open File 2003-7, 1:50 000 scale, URL <http://
www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/ www.empr.gov.bc.ca/Mining/Geoscience/Publica.
OpenFiles/2003/Pages/2003-7.aspx> [January 2016].
Ferbey, T. and Arnold, H. (2013): Compilation of micro- to macro-scale ice-flow indicators for the Interior Plateau, central British Columbia;
BC Ministry of Energy and Mines, Open File 2013-3, scale 1:900
000 scale, URL <http://www.empr.gov.bc.ca/Miningg/Geoscience/ Public
2016].
Hashmi, S., Plouffe, A. and Ward, B.C. (2015): Surficial geology,
Bootiack Mountain area, British Columbia,parts of NTS 93-A/5, NTS B-AC6, NTS 93 -A/11, and NTS 93 -A/12; Geological Survey of Canada. Canadian Geoscience Map 209 (preliminary) and BC Geological
Survey, Geoscience Map 2015-02, scale $1: 50$ O00, URL <http://www. empr.gov.bc.ca/Mining/Geoscience/Pu
Pages/GM2015-2.aspx> [January 2016].
McAndless, P. and Taylor, C. (2006): Surficial geology of the Mount Polley
property: summary of 2005 exploration work; BC Ministry of Energy and property: summary of 2005 exploration work; BC Ministry of Energy and
Mines, Assessment Report 28270, 31 p., URL <http://aris.empr.gov.
bc.ca/ArisReports/28270.PDF> [January 2016].

Till Geochemistry and Indicator Minerals
Till geochemistry data in the Mount Polley area were collected as part of a surficial geology program conducted by Imperial Metals Corporation in 2005. The data for copper, gold, silver and molybdenum are presented in McAndless and Taylor (2006). Additional till sampling in the area, including multi-element analyses and indicator-mineral tabulation for the same sample supported by the GSC and BCGS.
Hashmi, S. (2015): Quaternary geology and drift prospecting in the
Mount Polley region (NTS 093A); M.Sc. thesis, Simon Fraser University. 165 p .
McAndless, P. and Taylor, C. (2006): Surficial geology of the Mount Polley
property: summary of 2005 exploration work; BC Ministry of Energy and Mines, Assessment Report 28270, 31 p., URL <http://aris.empr.gov.

Soil Geochemistry

Pre-mining soil geochemistry data are available for the Mount Polley district as a single contiguous survey that covers most of the known mineralization within the Mount Polley intrusive
complex (McNaughton, 1987). In 1986, E\&B Explorations Inc. cut a survey grid (for a VLF-EM and IP survey) and collected B-horizon soil sample at most survey sites. The surveyline spacing is approximately 100 m , with sample sites at approximately 25 m intervals.
In total, 4773 samples were collected. An initial suite from even-numbered lines (at 200 m line spacing) was sent to
Vangeochem Labs for analysis, with the remaining 285 samples rom odd-numbered infill lines of interest sent to Acme Analytical Laboratories Ltd. for analysis later in the season. Samples were analyzed for gold by atomic absorption spectroscopy following arsenic, cobalt, chromium, iron, molybdenum, nickel, lead, and zinc) were analyzed by inductively coupled plasma-emission spectrometry following acid digestion (HCl-HNO3),
McNaughton, K. (1987): Cariboo-Bell project, 1986 geochemical,
geophysical and drilling report on the BJ, Bootjack, CB and Polley mineral claims, Cariboo Mining Division; BC Ministry of Energy and
Mines, Assessment Report 16040,267 .., URL hitt://laris.empr.gov.

nduced Polarization

Available digital induced polarization data for the Mount Polley area is from a survey in the Northeast zone area, conducted in 2004. The survey included 35 IP lines with 50 metre line spac ing, comprising a total of 51.3 kilometres; it was arranged as a . The digital data from these two surveys are made public by mperial Metals Corporation in this publication and the associated digital data package

Aeromagnetics and Radiometrics

The GSC datasets used were downloaded from the Canadian Aeromagnetic Database and the National Gamma-Ray Spectrometry Program Database (both accessed through Pere in UTM Zone 10N, NAD83 prior to being combined.
For the regional maps, the following surveys were combined to create the images presented: North Caribou Lake, Cottonwood and Wells, Likely, rtt_25301, Canada200m_August2010
In addition, several surveys provide data over the more immediate Mount Polley area:
Horsefly area survey (2003)
The GSC conducted a multisensor (gamma-ray spectrometric magnetic total field) helicopter-borne geophysical survey in the northeast-southwest and spaced at 500 m intervals.
Shives, R.B.K., Carson, J.M., Ford, K.L., Holman, P.B. and Cathro, M
(2003): (2003): Helicopter-borne gamma ray spectrometric and magnetic total
field geophysical survey, Horsefly area, British Colubbia; BC Ministry of
Energy and Mines, Open File 2004-09 and Geological Survey of Canada, Open Files 4615-4617, URL <http:///www.empr.gov.bc.ca/MINING
GEOSCIENCE/PUBLICATIONSCATALOGUE/OPENFILES/2004

Mount Polley mine area survey, Imperial Metals Corporation (2004)

In 2003, Imperial Metals Corporation, with partial funding through the BC and Yukon Chamber of Mines 'Rocks to Riches' program, conducted a multisensor (gamma-ray spectrometric magnetic total field) helicopter-borne geophysical survey ove ines were oriented east-west and spaced at 100 m intervals Shives, R.B.K., Carson, J.M., Ford, K.L., Holman, P.B. and Cathro, N field geophysical-burvey, Imperial Metals Corporation's Mount Poltey mine area, British Columbia; BC Ministry of Energy and Mines, Open
File 2004-10 and Geological Survey of Canada, Open File 4619, URL File 2004-10 and Geological Survey of Canada, Open File 4619, URL
<http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue OpenFiles/2004/Pages/2004-10.aspx> [January 2016].
Tisdall Lake survey (2005)
In 2004 the Geological Survey of Canada, with funding provided by Amarc Resources Ltd., conducted a multisensor (gamma-ray spectrometric, magnetic total field) helcopter-borne geophysical lines were oriented NE-SW, spaced at 250 m intervals.
Shives, R.B.K., Carson, J.M., Dumont, R., Holman, P.B. and Yeager D. (2005): Helicopter-borne gamma ray spectrometric and magnetic total Mield geophysical survey, Nisdall Lake area, British Columbia;
BC Ministrof Energy and Mines, Open Fiie 2005-16 and Geoologicial
Survey of Canada, Open Files 5292 and 5293, URL <http://www.emp. gov.bc.ca/Mining/Geoscience/Publical
Pages/2005-16.aspx> [January 2016].

Ground Magnetics
Local ground-magnetic surveys were conducted over various parts of he Mount Poiley property by Imperial Metals here by Imperial Metals. They have been combined into a single set of files and are presented as a combined image.

Gravity
A new gravity survey was flown in 2008 in the central BC gion, as part of the Geoscience BC QUEST project (Sande from Geoscience BC.
Sander Geophysics Ltd. (2008): Airborne gravity survey, Quesnellia
region, British Columbia; Geooscience BC, Report 2008-8, 121 p., URL
Electromagnetics (VTEM)
Time-domain helicopter-borne electromagnetic (VTEM) data were released by Geoscience BC for the Quest area in 2008 Geotech Limited, 2008). One-dimensional (1-D) conductivity soundings were inverted along the flight lines and presented as conductivity-depth sections; 1-D inversion result
released in 2009 (Mira Geoscience Limited, 2009).
Geotech Lttd. (2008): Report on a helicopter-borne versatile time domain
electromagnetic (VTEM) geophysical survey: QUEST proiect, central electromagnetic (VTEM) geophysical survey: QUEST project, central
British Columbia (NTS 93 , B, G, H, J, K, N, O and $94 C$, D); Geoscience BC, Report 2008-4, URL <http://www.geosciencebc.com/s/2008-04 asp> [January 2016]
Mira Geoscience Ltd. (2009): QUEST project: 3D inversion modelling integration, and visualization of airborne gravity, magnetic, and
electromagnetic cata, BC, Canada; Geoscience BC, Report 2009-15,
URL <http:/www.geosciencebc.com/s/2009-15 asp)

Data Sources:
Google Earth
Imagery Date: December 12, 2004 (as listed on Google Earth)

Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

Image © 2016

© 2016 Cnes/Spot Image

Data Sources:
Logan, J.M., Schiarizza, P., Struik, L.C., Barnett, C., Nelson, J.L., Kowalczyk, P., Feri, F., Mihalynuk, M.G., Thomas, M.D., Gammon, P.,
Lett, R., Jackaman, W. and Ferbey, T., 2010: Bedrock Geoology of the
 QUEST map area, central British Columbia; British Columbia Geological
Survey Geoscience Map 2010,1. Geoscience BC Report 2010-5, and
Geological Survey of Canada Open Fie 6476 .

BC MINFILE Recorded mineral occurrenc
coloured by tyee, sized by coloured by type, sized
status of development 1 Showing or anomaly
Prossect 2 Prospect
3 Developed prospet
4 Proculceror or past producer

Overlap assemblages and postaccretionary intrusions
mocene:
MiPICvbv Chilotin Group: basa
EOCENE to OLIGOCENE:
EOvV \vee Ootsa Lake Group rhyolite,
Kamloops Group high-K, calc-alkaline basalt, andesite, hyyolite

CRETACEOUS:
Kg Intusive rocks, undivided
KTog Sedimentary rocks, undivide
Triassic-Jurassic Quesnel terrane
intrusive rocks
EJMum Ultramatic rocks (Polaris ultramatic suite)
MJSMqm Quartz monzonitic intrusive rocks (Ste. Marie Plutonic Suite)
LTrJgd Granodioritic intrusive rocks

LTsy Syenitic intrusive rocks

Layered rock
Univs Undivided sedimentary rock
Mist Argilite, greywacke, conglomerate, turbidites
Nicola Group
等NSV: Undivided sedimentary rocks

Oceanic rocks
PALEOZOIC - MESOZOIC
Cache Creek Group

PTrClm	Limestone, marble, calcareous sedimentary
PTrCch	Chert, siliceous argillite, siliciclastic rocks
PTrCsv	Marine sedimentary and volcanic rocks
PTTCVE	Basaltic volcanic rocks
Mount	
uPzG	

Continental margin assemblages
LATE PALEOZOIC

CmMB	Black Stuart Group - undivided sedimentary rocks
MPA	Anter Formation - basalicic volcanic rocks
Mdr	Unnamed dioritic intrusive rocks
©M@	Quesnel Lake

LATE PROTEROZOIC - PALEOZOIC
Snowshoe Group
Paleozoic - metasedimentary rocks, minor greenstone \square Pro
Cariboo Group
Undivided sedimentary rocks

SCALE 1:250 000

Data Sources:

Original survey data from the GeoscienceBC QUEST gravity data:
(2008): Airbo

Sander Geophysics Limited (2008): Arb
Geoscience BC, Report 2008-8, 121 p.

Geqscience BC

Data Sources:
Original survey data from the GeoscienceBC QUEST gravity data:
Sander Geophysics Limited (2008): Airborne gravity survey, Quesnelia Region, British Columb

Bouguer; Horizontal Gradient
1:250 000

1

Mount Polley orebodies
(Rees et al., 2014)
grade conto

Azimuth: 90
Inclination : 45

SCALE 1:250 000
$\begin{array}{lll}0 & 5 & 10 \\ & 10 \\ & & \text { kilometres }\end{array}$
Universal Transverse Mercator Projection
NAD 83 Datum, Zone 10

ta Sources:
Geological Survey of Canada data sets used were downloaded from the
Canadian Aeromagnetic database The individual gridded data tilies were Canadian Aeromagnetic dataabase. The individual gridded data files were
reprojected into NAD83 UTM Zone 10N prior to being combined together
The data sets used in this image and their initial grid cell sizes are: The data sets used in this image
Caribo Lake - 5om gid cells
Cols. Cottonwood Wells 40 m grid cells
Eagle Cake MCKinley Creek -50 m grid cells
Horsefly -100 m grid cells Horselfy - 100 m grid cells
Likely -100 m grid cells rtit_25301-200m grid cells
Canada200m_Augutito

- 273 m cells

Multiple GSC survey data sets have been combined to make this image. All downloaded grids were
combined into a single grid with a 100 m grid cell size. Each survey has been levelled to minimize the difference with adioning surveys. Note that surveys flown at different altitudes and with differennt traverse line spacings show different amounts of detail. This produces some artifacts between surveys, which can
be sometimes discerned as a shadowed line. All data has been upward continued 50 m to reduce artifacts be sometimes discerned as a shadowed line. All data has been upward continued 50 m to reduce artifiacts
from the gridding algorithims used, this has the effect of slightly smoothing anomalies.

Mount Polley orebodies (Rees et al., 2014)
$0.1 \% \mathrm{Cu}$
grade contour

Azimuth : 90
Inclination: 90

Data Sources:
Data from hitp:///dar.agg..nran.gc.ca
Geological Survey of Canada data se
Geelogical Surrvey of Canada data sett used were downloaded from the Canadian
Aeromagnetic datatabase. The indiviviual gridded data files were reprojected Aeromagnetic dalabase. The indiviual gridded data ties were repre
NAD83 UTM Zone 10N prior to being combined together.
The data sets used in this image and their intitil grid cell sizes are: The data sets used in this imaels and
Caribou Lake 50 m grid cells
俍 Caribou Lake - 50 m grid cells
Cottonwood Wels -40 m grid clls
Eagie Laoke Mckinley Creek 50 m grid cells Eagle Lake Mckinley Creee
Horsefly- 100 O grid cells
Likely Horsetly - 100 m grid cells
Likely- 100 m grid cell
tit $25301-200 \mathrm{l}$ Canada200m_August2010-273m cells

Multiple GSC survey data sets have been combined to make this image.
All downloaded grids were combined into a single grid with a 100 m grid All downloaded grids were combined into a single grid with a 100 m grid
cell size. Each survey has been levelled to minimize the difference with cell size. Each survey has been tevelied ato minimize the difiference with
adioining surveys. Note that surveys flown at difierent altudes and with
diftent dififerent traverse line spacings show different amounts of detail. This discerned as a shadowewd line. Ald data has heen upward continued 50 m discerned as a shadowed line. All data has been upward continued 50 m
to reduce artifacts trom the grididg algorithims used, this has the effect
of s slightly smoothing anomalies.

The First Verical Derivative grid of the data was computed from the final map using a Fourier frequency transtorm method. "Ripples" seen
in areas of low reliet in the final map, parallel to or around very strong
 discounted by y user. The Firist Verticicl Derivative map emphosizes the
location of magnetic anomalies, it rovides a sharper and mare focused

 of bounding faults. The limits of geollogic bodies are indicated by linear
features ocurng at the transition from positive 1tD anomalies over
magnetic bodies to a negative low surrounding them.

SCALE 1:250 000
0
510 kilometres
Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

RADIOMETRICS
\% Potassium
1:250 000

I

Mount Polley orebodies (Rees et al., 2014)

SCALE 1:250 000

| 0 | 5 | 10 | 20 |
| :--- | :--- | :--- | :--- | kilometres

Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

Data Sources:

ata from http://gdra.agg.n.ncan.gc.ca
lese data may be readily sed for commercial, personal and public use and may be reproduced, in part
These terms and conditions with with the ata all time
Radioactivity Data
National Gamma-Ray Spectrometry Program Data Bas Airborne Geophysics Section, GsC-Central Cana Caase Division Geological Survey of Canada, Earth Sciences Secto
Natural Resources Canada

\% K / ppm Th

Mount Polley orebodies (Rees et al., 2014)

Data Sources:

Data from http://god.agg.nircan.gc.ca
hese data may be readily used for commercial, personal and public use and may be reproduced, in part
ese terms and condions

Racioactivity Data
National Gamma-Ray Spectrometry Program Data Base Airborne Geophysics Section, GSC-Central Canada Division eological Survey of Canada, Earth Sciences Sector

Red : Combined Percent Potassium Green : Combined Equivalent Thorium
Blue : Combined Equivalent Uranium

Mount Polley orebodies
(Rees et al., 2014)
$0.1 \% \mathrm{Cu}$ grade contour

Data Sources:
Data from http://godragg.nircan.gc.ca
These data may be readily used for commercial, personal and public use and may be reproduced, in part
These terms and conditions
Radioactivity Data
National Gamma-Ray Spectrometry Program Data Bas Airborne Geophysics Section, GsC - Central Cana Cana Dive Geological Survey of Canada, Earth Sciences Sector
latural Resources Canada

A geo-exploration atlas of the Mount Polley porphyry copper-gold district

LEGEND

- II industrial buildings
- . tanks
chimney (burner)
buildings
■ campground
picnic site
transformer station
- tower

业业 wetland
majorroad
minor road
wooded area

Mount Polley orebodies
(Rees et al., 2013)
$0.1 \% \mathrm{Cu}$
grade contou

Data Sources:
Natural Resources Canada (2013): CanVec, Canada, 093A05, 06, 11, and 12; Natu ral Resources Canada, Earth Sciences Sector, Mapping Information Branch, Centr r Topographic Information, URL http://geogratis.gc.ca [July, 2013]
GeoBC, 2013: Digital Road Atlas; Crown Registry and Geographic Base, Province
of British Columbia, URL < httr://archive.imb.gov.bc.ca/crgb/products/mapdata/ digital_road_atlas_products.htm> [July, 2013]
-
anadian Council on Geomatics (2007): Canadian digital elevation data; Natura cded/description.html> [July, 2013].

Mount Polley orebodies

SATELLITE IMAGERY Landsat8 - Natural Colour

1:50 000

July 1, 2013 @ 19:08 GMT

Mount Polley orebodies

(Rees et al., 2013)
grade contour

SCALE 1:50,000
\qquad 5

Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

Mount Polley orebodies (Rees et al., 2013)
grade contou

SCALE 1:50,000

0

Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

Landsat 8 bands 4 and 5 are used to calculate the
NDVI using: NDVI using
NDVI $=($ Band $5-$ Band 4$) /($ Band $5+$ Band 4$)$

NDVI
Chlorophyll Activity

SCALE 1:50,000
${ }^{\circ}$

Data Sources:
URL < http://landsat.usgs.gov/index.php > [December, 2013]
Landsat 8, 2013: July 1, 2013, 19:08GMT; WRS Path 48 Row 23
Standard Geometrically Corrected, Pansharpened, DRA-off. Cal Data Ltd

Normalized Difiference Vegetation Index (NDVI) is a traditional index that measures chlorophyll. Green vegetation
absorbs electromagnetic radiation in the range of $0.4-0.7$ um and reflects EMS raciation in the $0.7-1.1$ um range. This simple analysis is a powerful tool to quickly identity areas of no vegetation such as rock exposures, snow and ground verification can potentially be used to map vegetation differences related to the underlying geology -

Data Sources:
 Polley Area, central British Columbia (parts of NTS 093A/05, 06, 11 and 12); British Columbia Ministry of Energy, Mine
and Petroleum Resources, Geoscience Map 2007-1.

After Logan et al., BCGS Geoscience Map 2007-1 LEGEND

INTRUSIVE ROCKS
MIDDLE JURASSIC
MJam
Hornblende-biotite quartz monzonite
RLY JuRASSIC
TJmz Pyroxene-hormblende monzodiorite, hornblende-biotite
LATE TRIASSIC

LTMPmz
Biotite-pyroxene diorite

LTBJmsy Melanocratic (pyroxene + hormblende) pseudoleucite syenite
LTBJosy Orbicular pseudoleucite nepheline syenite
LTMPic $\begin{aligned} & \text { Hydrothermal altered intrusive carapace holocryy } \\ & \text { intrusions and colcaniclastic wall rock (undivided }\end{aligned}$

LAYERED ROCKS
QUATERNARY
Qal Thick alluvium cover
cretaceous
Kcg Pal Polymictic clast-supported cobble conglomera
LOWER JURASSIC
 Quartz-phyric latite tuff
UPPER TRIASSIC TO LOWER JURASSIC
TJvcg Well-bedded and sorted, polymict volcanic conglomerate,
gacrystic syenite clasts

MIDDLE TO UPPER TRIASSIC

Mutnv	Pyroxene/hornblende metabasalt, greenstone and plagioclase crystal tuff
MuTNS	Graphitic and quartzose phyllite, shale, silstone and sandstone
Mount Polley orebodies (Rees et al., 2013)	
$\begin{aligned} & 0.1 \% \mathrm{Cu} \\ & \text { grade contour } \end{aligned}$	
SCALE 1:50,000	
0	2.5

- Porphyry Districts of British Columbia Atlas Series

Data Sources:

Hashmi, S. (2015): Quaternary geology and drift prospecting in the Mount Polley region (NTS 093A). .
Hashmi, S., Ploufte, A.. and Ward, B.C.,. 2015. Surficial geology, Bootiack Mountain area, British Columbia, Parts of NTS 93 -A A5, NTS 93 -A/6, NTS 93-A/11, and NTS 93-A/2; Geological Survey of Canada,
Canadian Geoscience Map 209 (preliminary); British Columbia Geological Survey, Geoscience Map 2015Canadian Geoscience
02 , scale $1: 50$ ooo.

Ferbey, T. and Arnold, H . (2013): Compilation of Micro to Macro-scale ice-flow indicators for the Interior
Plateau, Central British Columbia; British Columbia Geological Survey. Open File 2013-03.

Additional surficial geological mapping (not presented here but provided in the digital database) is from:
McAndless, P. and Taylor, C., 2006: Surficial Geology of the Mount Polley property: Summary of 2005 exploration work; British C
Report 28270 which includes the surficial geological mapping by Blackwell, J. and Stubley. T. (2005), internal report for Imperial Metals Corporation. Digital data provided by Imperial Metals Corporation.

Mount Polley orebodies grade contours
(Rees etal., 2014)

3i.

LEGEND

QUATERNARY
Non-glacial environment
Anthropogenic (Mine tailings)
Organic deposits
Colluvial and mass wasting deposits
Cv colluvial veneer: thin and discontinuous cover of slumped or till; occurs on moderate to steep slopes. Alluvial sediments
At Alluvial terraced sediments: sorted gravel, sand, and minor sitt; more than 2 m thick; forming inactive terraces above modern floodplain; represents a potential aggregate source.
Alluvial
Af Aluvial fan sediments: poorly sorted gravel, sand, an iamicton; more than 2 m thick; occur where a stream isses in a narrow valley onto a plain or valley floor. Lacustrine sediments, undifferentiated. Sand, silt, and minor clay intermixed with variable amount of organic material, deposited in a lake: more than 1 m thick; expose
following lowering of lake levels: includes orgenic deposits too small to be mapped separately.
Proglacial and glacial environment Glaciolacustrine sediments: deposited in glacier-dammed
lakes in valleys and along the margin of retreating olaciers lakes in valleys and along the margin of retreating glaciers
$\mathrm{GLL}^{\text {Glaciolacustrine veneer: fine sand, silt, and clay; }}$ dominantly laminated and bedded; 1 to 2 m thick on average; thin and discontinuous. 102 m thick on Glaciofluvial sediments: deposited behind, at, or in front of the ice margin by glacial mettwater.
GFt Glaciofluvial terraced sediments: sand and gravel; 1 to 10 m thick; forming gently sloping flat surfaces perched above modern streams.
GFh Hummocky glaciofluvial sediments: poorly-sorted sand and gravel with minor diamicton; bedded to massive; 1 to more than 20 m thick; deposited in contact with a
retreating glacier; forms hummocky topography.
GFC Ice-contact glaciofluvial sediments: poorly-sorted coarse sand and gravel deposits with pockets of diamict m thick.
GFk Kame terraced sediments: poorly sorted sand and gravel with minor diamicton; bedded to massive; 1 to more
than 20 m thick: deposited in contact with a retre than 20 m thick; deposited in contact with a retreating glacier; forms terraces
modern valley floor.
GFv Glaciofluvial veneer: sand and gravel; 1 to 2 m thick; occurs near the margins and at the mouth of meltwater channels follows underlying topography. Till: deposited directly by glaciers.
Streamlined and fluted till: more than 2 m thick on
average, till surface marked by streamlined landform average, till surface marked by streamined land
including flutings, drumlins, and crag and tails.
Tv Till veneer: more than 2 m thick on average, till surface marked by streamined androms including flutings, drumlins, and crag and tails.
Till blanket: more than 2 m thick, continuous till cover Till blanket: more than 2 m thick
forming undulating topography.

PRE-QUATERNARY
R Bedrock

Ice Flow Indicators \& Geological Features
Uni-directional
Bi-directional
crag and tail ridge drumlinoid or fluting
$>$ drumlinoid ridge / fluted bedrock
\nearrow fluted bedrock
striation or groove
\ngtr striation
esker ridge (direction known)
<><>>>>>>< esker ridge (direction unknown)
minnmer meltwater channel (direction known)
minor meltwater channel (direction unknown)
major metwater channel scarp
landslide escarpment

SCALE 1:50,000
\qquad
Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

Total Magnetic Intensity
1:50 000

Planned limits

Data Sources:
the background imageis the same as presernd the 1.200,000 scale
maps for references.

Shives, R.B.K., Carson, J.M., Ford, K.L.,. Holman, P.B., and Cathro, M., 2004, Helicopter-borne gamma ray
spectrometric and magnetic total field geoohysical survev, Imperial Metals Corporation's Mount Polley Mine area. British Columbia: British Columbia Ministry of Energy Mines and Petroleum Resources Open File
$2004-10$ / Geolocial Survey of Canada Open File 461 .

MAGNETICS
First Vertical Derivative
1:50 000

Data Sources:
The background image is the same as presented in the $1: 250,000$ scale maps in this atlas; refer to thos
maps for reference
The more detailed survey is the Imperial Metals Corporotion Mount Polley Mine survey. It is availab
thorugh the Canadian Aeromagnetic Database htpp:/ggor.agg.nrcan.gc.ca
Shives, R.B.K., Carson, J.M., Ford, K.L., Holman, P.B., and Cathro, M., 2004, Helicopter-borne gamma ray

Data Sources:
Geotech Limited, 2008: Report on a helicoopter-borne versatile time domain electromagnetic (VTEM) geophysical survey: QUEST Project, central ISritish
Columbia (NTS $93 A, B, G, H, J, K, N, O \& 94 C, D)$; Geosience BC Report 2008-4, eport and data.
Mira Geoscience Ltd., 2009: QUEST Project: 3 DD inversion modelling, integration, and
visualization of airborne gravity, magnetic, and electromagnetic data, BC, Canada; Visualization of airborne gravity, magnetic, and
ogan, J.M., Bath, A.B., Minalynuk, M.G., Rees, C.J., Ullrich, T.D., Friedman, R

VTEM conductivity depth sections are presented here. They have been
plotted alilineded along notional straight EW flight ines without vertical
exaggeration. The 1000 e elevation on the the section corresponds with exaggeration. The 1000 m elevation on the the section corresponds with the
filight ine. Depths on the sections can be scaled from the top of the section. The VTEM survey was flown to map geology, rock types, fauts, and the were not expected to be numerous, and the principal response comes from the depth of cover and the rock types below. The bulk resistivity of rocks is controlled mainly by porosity and fracturing, and the amount and salinity
of the water in these openings. Fauts with gouge or fracture zones may of the wate in these openings. Faults with gouge or fracture zones may
produce conductivity anomalies. Clays are normally more conductive, and produce conductivity anomalies. Clays are normally more conductive, and
gravels may report as resistors. Graphitic horizons are usually conductive.

Note that blue colours represent resistors and red colours more conductive Note that blue colours represent resistors and red colours more conductive
zones. .lat tying regions of disisinct resistitities, usually more conductive a the
top of the
overturdection, overburden may be thicker.

Blue regions on the bottom of the section may be interpreted as more electricaly
resistive rocks, with reduced porosity and fracturing. These may be intrusives. The EM Mignal does not penertate deeply into the more conductive parts
of the geologic section. A review of thy data indicates that when the total
conductance of the section reaches 6 Siemens. litte signal penetrates be conductance of the section reaches 6 Siemens. litties signat l leneneratates boyond this
conductance. The conductivity depth sections have been trimmed at 6 Siemens conductance. The conductivity depth sections have been trimmed at 6 Siem ths
total conductacce. No signal is expected to come from the deeper parts of the total conductance. No
section in these parts.

Mount Polley orebodies grade contours
(Rees et al., 2014)

SCALE 1:50,000

Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

RADIOMETRICS
\% Potassium
1:50 000

SCALE 1:50,000
0 2.5

Data Sources:
Data from http://gdr. agg. nircan.gc.ca
These data may be rearly used for commercial, personal and public use and may be reproduced, in part
These terms and conditions remain with the data at all times.
Radioactivity Data
Citation 2013:
National Gamma-Ray Spectrometry Program Data Base Airborne Geophysics Section, GSC - Central Canada Division Geological Survey of Canada, Earth Sciences Sector
Natural Resources Canada
$585,000 \quad 587,500 \quad 590,000$

RADIOMETRICS
K/eTh
1:50 000

-0.75 -0.61 -0.48 -0.35 -0.22 0.08
 \% K / ppm Th

Mount Polley orebodies
(Rees et al., 2013)
-s

SCALE 1:50,000
0

These data may be readily used for commercial, personal and public use and may be reproduced, in part
or in whole and by any means, without charge for turther permission from Natural Resources Canada.
These terms and conditions remain with the data at all times.
Radioactivity Data
Citation 2013:
National Gamma-Ray Spectrometry Program Data Bas National Gamma-Ray Spectrometry Program Data Base
Airborne Geophysisis Section, GSC - Central Canada Division Geological Survey of Canada, Earth Sciences Sector

National Gamma-Ray Spectrometry Program Data Base
National Gamma-Ray Spectrometry Program Data Base
Airborne Geeophysics Section, GSC - Central Canada Division
Geological Survey of Canada, Earth Sciences Sector
Geological Survey of Canaca
Natural Resources Canada

Data Sources:
Hashmi, S. (2015): Quaternary yeology and dritt prospecting in the Mount Polley region (NTS 093A).
M.Sc. thesis, Simon Fraser University. 165 pages and digital data.
,
Hashmi, S., Ploufte, A., and Ward, B.C., 2015. Surficial geology, Bootiack Mountain area, British Columbia,
Parts of NTS $93-A 55$, NTS $93-A 6$, NTS 93 -A11 , and NTS 93 -A 12 Geological Survey of Canada

Canadian Gessienc
02 , scale $1: 50$
000 .
Ferbey, T. and Arnold, H. (2013): Compilation of Micro to Macro-scale ice-flow indicators for the Interior
Plateau, Central British Columbia; British Columbia Geological Survey Open File 2013-03

SCALE 1:150,000
0

Universal Transverse Mercator Projection
NAD 83 Datum, Zone 10

Chalcopyrite Grain count
(normaized to 10 kg bulk sample) $0.25-0.5 \mathrm{~mm}$ grains

- $0.01-1.00$
- 1.01-2.00
- $\begin{array}{r}\text { 2.01-3. } 3.00 \\ \hline\end{array}$
- $3.01-4.00$
$\int^{\text {5.01- }-9.00}$

LEGEND (Surficial Geology background)
for more detai see Map 3.2 QUATERNARY
Non-glacil enviro

Mount Polley orebodies
${ }_{\substack{\text { grade oontours } \\ \text { (Rees etal., } 2014 \text {) }}}$
\%.

Arsenopyrite
Grain count
(normalized to 10 kg bulk sample)
$0.25-0.5$ mm grains
-0.01-1.00

1:150 000
 10

Andradite garnet
$\underset{\substack{\text { Grain count } \\ \text { (normalized to } \\ 10 \mathrm{~kg} \text { bulk sample) }}}{ }$
$0.25-0.5 \mathrm{~mm}$ grains

- 1.40
- $41-100$
- 201-2,000
2.001-8.000

LEGEND (Surfifial Geology background)
for more detai ise Map 3.2
QUATERNARY
Non-glacial enviro

Mount Polley orebodies
Mount Polley or
graed conous
(Rees etal 1 , 2014)

Apatite
Percent
$0.25-0.5 \mathrm{~mm}$ grains
-0
-0.10
0.10
0.50
0.0

SCALE 1:150,000
0 $\stackrel{5}{5}$
kilometres

Universal Transverse Mercator Projection
NAD 83 Datum, Zone 10
Epidote
$0.25-0.5 \mathrm{~mm}$ grains

- 0.2 - 3.0
- $3.0-6.0$
- $7.0-20.0$
- $21.0-40.0$
.

Data Sources:
Hashmi, s. (2015): Quaternary geology and dritt prospecting in the Mount Polley region (NTS 093A).
Hashmi, S., Ploufte, A., and Ward, B.C., 2015 . Surficial geology, Bootiack Mountain area, British Columbia
Parts of NTS $93-A /$, NTS $93-A 6$, NTS 93 -Al11 and NTS $93-A / 12$ Geological Survey of Canadian Geoscience Map 209 (preliminary): British Columbia Geological Survey, Geoscience Map 2015 Canadian Geoscienc
02, scale $1: 50$
0
Ferbey, T. and Arnold, H. (2013): Compilation of Micro to Macro-scale ice-flow indicators for the Interior
Plateau, Central British Columbia; British Columbia Geological Survey, Open File 2013-03

TILL GEOCHEMISTRY
Commodity Elements
1:150 000

Data Sources:
Hashmi, S. (2015): Quaternary geology and driti prospecting in the
165 pages and digital data
McAndless, P. Pand Taylor, C., 2006: Suricial Geology of the Mount Polley property: Summary of 2005
exploration work; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 28270,31 pages.
Includes till geochemisty
Hashmi S. Plouffe A Hashmi, S., Ploufte, A., and Ward, B.C., 2015 . Surficial geology, Bootjack Mountain area, British Columbia
Parts of NTS $93-A / 5$, NTS $93-A 6$, NTS 93 -A111, and NTS $93-A 12$ Geological Survey of Canada, Parts of NTS
Canadian Geoscience Map 209 (preliminary); British Columbia Geological Survey, Geoscience Map 2015
02, scale 1:50 ooo.

$0-50$	$\quad 34.53-88.62$
$50-75$	$88.63-11473$

$50-75 \square$ 88.63-114.73
$75-90 \square$ 114.74-146.98
90 -95 \square 146.99-286.20
95-98 $\square^{286.21-553.00}$
98-100 $\square 55.01$ - 739.38

SCALE 1:150,000
0 $\stackrel{5}{\stackrel{1}{1}}$

10
kilometre
Universal Transverse Mercator Projection
NAD 83 Datum, Zone 10
$\begin{array}{cc}\text { ercentile } & \text { ppb } \\ 0.50 & 0.4-5.7\end{array}$

$0.50-0.4-5.7$
$50-75-5.8$

75-90 $\quad 10.8$ - 17.6

$90-95 \square$| $17.7-26.7$ |
| :--- |
| $95-98$ |${ }^{26.8-76.3}$.

Mo
$\begin{array}{cc}\text { percentile } & \\ 0.50 & \text { ppm } \\ 0.51-0.070\end{array}$
$0-50$
$50-75$
$50.31-0.70$
0.71 .01
50-75 $0.71-1.01$

| $75-90$ |
| :--- | :--- |
| 90.95 |
| $+1.02-1.36$ |

${ }_{95-98}^{\square} \square^{2.83-4.75}$
98-100 $\square^{4.76-7.28}$

LEGEND (Surficial Geology background
for more detail see Map 3.2
QUATERNARY
Non-gacial enviro

Mount Polley or
Mount poitey
grade contors
(Rees et al. 2014)
$\square_{0}^{0.6 \%} \mathrm{Cu}$
$\square_{0}^{0.3 \% \mathrm{Cu}}$
$0.1 \% \mathrm{Cu}$

Ag
$\begin{array}{cc}\text { percentile } \\ 0.50 & \mathrm{ppb} \\ 0.0 .0-67.0\end{array}$
$50-75$ 67.1-97.0
5-90
90-95 $\square \quad$ 134.1-198.
95-98 \square 198.1-293.0
98-100 \square 293.1-353.0

TILL GEOCHEMISTRY

1:150 000

Data Sources:
Hashmi, S. (2015): Quaternary geology and drift prospecting in the Mount Polley region (NTS 093A).
M.Sc. thesis, Simon Fraser University. 165 pages and ligital data.
65 pages and digital data
McAndless, P. Pand Taylor, C., 2006: Suricial Geology of the Mount Polley property: Summary of 2005
exploration work; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 28270,3 , 1 1 pages.
Includes til loeochemistry
Includes till geochemistry data for $\mathrm{Cu}, \mathrm{Au}, \mathrm{Ag}$, Mo, digital data provided by Imperial Metals Corporation. Hashmi, S., Ploufte, A., and Ward, B.C., 2015 . Surficial geology, Bootjack Mountain area, British Columbia
Parts of NTS $93-A / 5$, NTS $93-A 6$, NTS $93-A / 11$, and NTS $93-A / 12$ Geological Survey of Canada, Canalian Goossience Map 209 (preliminary); British Columbia Geological Survey, Geoscience Map 2015
O2, scale 1:50 ooo.

Pb
percentile ppm
$0.50-0.00-6.46$
50 -75 6.47-8.18
$75-90 \quad 8.19-10.88$
$90-95 \square 10.89-14.74$
$95-98 \quad$ 14.75-19.26
98 -100 \square 19.27-27.62

EGEND (Surficial Geology background quaternary

Mount Polley orebodies
grade contours
(Rees et al., 2014)
3.

Ni

percentile $\quad \mathrm{ppm}$
$\begin{array}{ll}0-50 & 16.8-3.9\end{array}$
$50-75 \square$ 34.0-44.4
75-90 \square 44.5-55.2
90 -95 $\square 55.3$-67.0
95-98 \square 67.1-90.3

SCALE 1:150,000
0 $\stackrel{5}{1}$ 10
kilometres
Universal Transverse Mercator Proiection
NAD 83 Datum, Zone 10

TILL GEOCHEMISTRY

Data Sources:
Hashmi, s. (2015): Quaternary geology and drift prospecting in the Mount Polley region (NTS 093A).
. 165 pages and digitial data.
McAndless, P. Pand Taylor, C., 2006: Suricial Geology of the Mount Polley property: Summary of 2005
exploration work; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 28270,3 1. 1ages.
Includes til geochemistry
Includes till geochemistry data for $\mathrm{Cu}, \mathrm{Au}, \mathrm{Ag}$, Mo; digital data provided by Imperial Metals Corporation.
 Parts of NTS $93-$-A 5 , NTS
Canacian Geasce
02, scale 1:50 Ocience Map 209 (preliminary); British Columbia Geological Survey, Geoscience Map 2015

SCALE 1:150,000
0 $\stackrel{5}{\stackrel{1}{1}}$
Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

Pd

$0-50-5$
$50-75-6.12$

$50-75 \square 6-12$
$75-90$
$13-17$

$55-90 \square \quad 13-17$
$90-95 \square \quad 18-20$

$95-98 \square$
$98-100$

LEGEND (Surfiial Geollogy background)
for more detail see Map 3.2
QUATERNARY
Non-glacial enviro

Mount Polley orebodies
grade contours
(Rees et al., 2014)
湤

W
percentile ppm

$0-50$
$50-75$
50

${ }_{75-90}-0.3$
$90-95 \square 0.4$
$95-98$
$98-100$
$0.5-0.6$
0.77
$0-50-0.00-0.32$
$50-75-0.33-0.49$
$75-90 \square 0.50-0.73$

$90-95 \square$
$95-98$

$95-98$
$1.35-2.01$

A geo-exploration atlas of the Mount Polley porphyry copper-gold district

Data Sources:
Jackaman, W. (2008): QUEST Project sample reanalysis; Geoscience BC, Report 2008-3, 4 p.
 Gammon, P., Lett, R., Jackaman, W. and Ferbey, T., 2010 : Bedrock Geology of the QUEST map area, central British Columbia;
British Columbia Geological Survey Geoscience Map 2010-1, Geoscience BC Report 2010-5, and Geological Survey of Canada
Open File 6476.

1:200 000

grade contours
(Rees etal. 2014)
\%.

Au

percentile
0.50 $\stackrel{\mathrm{ppb}}{0.3-2.1}$
50-75 \bigcirc 2.2-3.1
75-90 \bigcirc 3.2-5.7
$90-95$
$95-98$
\bigcirc
$95-98$
$98-100$
\bigcirc

Ag

$0-50-12.0-105.0$
$50-75$
$\begin{array}{ccc}50-75 & 105.1-161.0 \\ 75-90 & 161.1-262.0\end{array}$
$90-95 \bigcirc 262.1-364.0$

98 - 100 $\bigcirc_{374.1 .1-301.0}$

SCALE 1:200,000
0 \qquad 10 15

Data Sources:
Jackaman, W. (2008): QUEST Project sample reanalysis; Geoscience BC, Report 2008-3, 4 p.
 Gammon, P., Lett, R., Jackaman, W. and Ferbey, T., ,2010: Bedrock Geology of the QUEST map area, central Sritish Columbia;
British Columbia Geological Survey Geoscience Map 2010-1, Geooscience BC Report 2010-5, and Geological Survey of Canada
Open File 6476.

Bedrock geology background
see map 1.2 for legend

Mount Polley orebodies
grade contur

grade contours
(Ress etal. 2014$)$

\%. $\begin{aligned} & \square 0.6 \% \mathrm{Cu} \\ & 0.3 \% \mathrm{Cu} \\ & 0.1 \% \mathrm{cu}\end{aligned}$

Hg
percentile
0.50 $\quad \begin{array}{r}\text { ppb } \\ { }^{11-63}\end{array}$
50-75 - 64-89
75-90 ○ 90 - 125
90-95 ${ }_{126-227}^{1227}$
${ }^{98-100} \bigcirc_{3233-3240}$

SCALE 1:200,000

Zn
percentile ppm
$\begin{aligned} & 0-50 \text { - } \\ & 50-75-54.1 \\ & 54.1-69.0\end{aligned}$
75 -90 \bigcirc 69.1-83.9
90-95 \bigcirc 84.0-108.7

$95-98$
$98-100$

QUATERNARY
Qal Thick alluvium cove
LATE TRIASSIC - EARLY JURASSIC
NICOLA GROUP (IN PART)
EJt Trachyandesite tuff. Plagioclase-hornblende-biotite and minor (1\%) quartz grains in apha.
et al. 2007b).Melanocratic (pyroxene + hornbende) pse
Orbicular pseudoleucite nepheline syenite
${ }^{6}$ O.
$\begin{aligned} & \text { Breccia, conglomerate. Massive, coarse, matrix-supported polymictic } \\ & \text { breccia and minor cobble conglomerate, with clasts of internediate }\end{aligned}$ intrusives, volcanics and microporphyries, in grey to maroon crystalalititic matrix. .inorol ithicic sandstone-siltstone, and rarert trachyte-latite. Strong
hematie cement immeliaely north of and overlying PPIC.

LATE TRIASSIC - EARLY JURASSIC
MOUNT POLLEY INTRUSIVE COMPLEX (MPIC)
LTrpap Augite porphyry dyke. Green-grey, fine grained, basaltic-andesitic dykes with subequant clinopyroxene phenocrysts, and lesser aphyric
mafic-intermediate dikes. matic-intermediate dikes. Intrusive complex with a significant amount of fragmental breccia
polymictic/ligomicicic) or inclusion-rich intrusion Li,popx,m. cos subangular diorite to monzonite porphyry clasts in a cognate igneous cement (igneous breccia), andifr a a clastic matrix of tine to coarse roce
flour. Clasts in inneous breccia may be partily resorbed. Contacts are gradational into variably brecciated (monomictic iligsaw-fit type) diorite monzonite. Characterisitic of bx1 (though not ubiquitous) is texturedestructive aliereation due to moderatit to strong secondary K-Feldspar
biotite \pm allite \pm magnetite \pm actinoliteldiopside \pm garnet, replacing the gneous groundmass or breccia matrix, or rermeating fractures.
Trpbx1m= mineralized to ore or near ore-grade with chalcopy Llipobicim= mine
bornite or pyrite.
LTrpbx2 \wedge As bx1, but occurs outside central MPIC and is characterized by less
Than rock tlour matix andlor mineral cement. bxam $=$ mineralized to ore位

LTripbx3 Fragmental breccia (polymictic) comprising mm - to cm -scale, rounded to angular, monzonitic porphyry clasts in a related rock flour matrix. Mostly matrix supported. Distinguished from LTrpbx1 and LTrpbx2 by a lack of (1)
conerent rocks, (2) igneous breccia cement (3) potassic alteration (except intransported clastst), and (4) mineralization (except pyrite). Local garnet alteration. Subtype bx3a has a tiner rock flour matrix and a high matrix to
clast ratio.

Pastras Polassimm feldspar-(plagioclase--phyric monzonite. Pale to deep pink, fine chenocrysts, with rrochyytoid aligment in some dikes and and larger int | Plagioclase feldspar porphyry (monzodiorite). Grey to red-pink where |
| :--- |
| strongly altered. tyvically crowded with phencrysts sp | aligned, in fine-grained groundmass.

LTrpmz Monzonite to monzodiortie. Pale pink, medium-grained, even-textured,
LTrpmdu Monzodiorite and monzonite, some diorite, undivided. Genera lagiolase-phyic, malk, ithic and other inclusions common, verging on hydrothermal breccia note differentiated on map.Leucodiorite porphyry, banded. Minor unit. Pale green and pale grey, fine lo medium grained, characterized by wispy laminations (possibibe flow
banding) and fluidal (?) clasts; gradational with unit Pmdu
Diorite to monzodiorite, leucodiorite, and minor monzonite. Characterized by uneven textures and numerous small inclusions. Grey to green-grey, cream-grey 9pink where more alterea), medium graned, usualy
nequigranular to suboorphyitic (plagioclase and local augite inequigranular
phenocrysts).
LTipadi
Even-textured augite-biotite) diortie to monzodiorrie. Speckled medium-
grey, medium to coarse grained mostly equigrantar Even-textured augite-(biotitie) diorite to monzodiorite.
grev, medium to coarse grained, mostly equigranular. Pyroxenite, minor melagabbro. Dark green to black, medium to coarse
NICOLA GROUP (NORIAN)
LTbabx Basalt to andesite, or intrusive-equivalent meladiorite, microdiorite. breccias. Grey dark mauve, dark coen tinly pland ragamental breccias. Grey, dark mauve, dark green, finely plagioclase- or pyroxene-igneous-hydrathermal and volcaniclastics, characterized by a lack of felsic
porphyry fragments. Local lenses of matic or calcareous sediments porphyry fragments. Local lenses of matic or calcareous sediments,
limestone. Gradational oconacts with MPCI, where some breccias may be
hydrothermal and coeval wtic MPIC intrusions.

Rees
(Rees et al., 2013)
$0.1 \% \mathrm{Cu}$
grade contour
grade contour

SCALE 1:20,000
alteration
"n Abite - epidote - pyrite
Andradite garnet - epidote
K. \quad K-feldspar - biotite - albite - magnetite - diopside/actinolite
(n..n K-teldspar - biotite - magnetite - albite
\because K-feldspar - magnetite - biotite - chlorite - calcite - andradite garne

Mount Polley pits
Current Limits

Rees, C., Gillstrom, G., Ferreira, L., Bjornson, L. and Taylor, C. (2014): Geology of the Mount Polley Intrusive Complex
(Final Version): Geooscience BC, Report 2014-08. Logan, J.M., Bath, A.B., Mihalynuk, M.G., Rees, C.J., Ullich, T.D., Friedman, R., 2007: Regional Geology of the Mount Polley Area, central British Columbia (parts of NTS
and Petroleum Resources, Geoscience Map 2007-1
Waforn, S. R. (2013): Structural Geology of the Mount Polley Cu-Au District, South-Central British Columbia; M.Sc. thesis, Oregon State University, 112 p .

Data Sources:

Rees, C. Gillstrom, G. Ferreira, L. Biornson, L. and Taylor C. (2014):
and
ance
computerized block models used at the Mount Polley Mine computerized block models used at the Mount Poliey Mine
or reserve estimation. The models include already mined re as well as remaining resources (to December, 2012), most representative of the ore zones. In the core of Mount Polley centred on the Springer zone, the contours are at an elevation of 1000 metres (a.s.I.). This is roughly quivalent to $100-200$ metres below the pre-mining may be different in detail but are generally conformable.
The 'limit of elevated copper' contour is less rigorously efined, based on assay results from exploration drilling trenching and mapping.

BEDROCK GEOLOGY Mineralization - Gold Grade

1:20 000

Data Sources:
Rees, C., Gillstrom, G.. Ferreira, L.., Bjornson, L. and Taylor, C. (2014) eoology of the Mount Polley Intrusive Complex (Final Version); Geoscience BC, Report 2014-08.

SCALE 1:20,000

The gold contours were generated from the $3 D$ computerized block models used at the Mount Polley Mine for reserve estimation. The models include already mined
ore as well as remaining resources (to December, 2012). ore as well as remaining resources (to December, 2012),
The contours show the grade distribution at an elevation most representative of the ore zones. In the core of Mount Polley centred on the Springer zone, the contours are at an elevation of 1000 metres (a.s.I.). This is roughly equivalent to $100-200$ metres below the pre-mining may be different in detail but are generally conformable.

MAGNETICS - Airborne Residual Magnetic Intensity

1:20 000

Mount Polley orebodies
(Rees et al., 2014)
: 8

SCALE 1:20,000 kilometres

Data Sources:
The Imperial Metals Corporation Mount Polley Mine survey data is available thorugh the Canadian The Imperial Meealas Corporation Mount Poiley Mine sur
Aeromagnetic Database <http://gdr.agg.nrcan.gc.ca $>$
Shives, R.B.K., Carson, J.M., Ford, K.L., Holman, P.B., and Cathro, M., 2004, Helicopter-borne gamma ray spectrometric and magnetic total field geophysical survey, Imperial Metals Corporation's Mount Polley Mine area, Sritish Columbia: British Columbia Ministry of Ene
2004-10 Geollocial Survey of Canada Open File 4619.

Data Sources:
Digital files for previously unpublished ground magnetic data provided by Imperial Metals Corporation.

This image is generated from ground magnetic survey data from various parts of the
Mount Polley district. Surveys were conducted by Imperial Metals between 2007

SCALE 1:20,000

kilometres

Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

A geo-exploration atlas of the Mount Polley porphyry copper-gold district

Data Sources:
Digital files for previously unpublished ground magnetic data provided by mperial Metals Corporation.
The Imperial Metals Corporation Mount Polley Mine survey data is available thorug e Canadian Aeromagnetic Database <http://gdr.agg.nircan.gc.ca > Helicopter-borne gamma ray spectrometric and magnetic total field M.eophysical
survey Imperial Metals Corparations survey, Imperiai Metals Corporation's Mount Polley Mine area, British Columbia:
British Columbia Ministry of neregy Mines and Petroleum Resources Open Fie British Columbia Ministry of Energy Mines and Petroleum Resources Open File 2004
10 / Geoolocial Survey of Canada Open File 4619 .

This combined image is generated from the same ground magnetic survey data
presented in the previous map. overlain and integrated with the aeromagnetic presented in the previous map, overlain and integrated with the aeromagnetic of both high and low magnetic features in the ground magnetic data, which shows signitifcantly more detail in the anomalous areas.
While the highest magnetic response in the central part of the intrusive complex generally coincides with the breccia-hosted mineralization in the original Cariboo-
Bell area, the high-grade Northeast zone mineralization produces a low magnetic esponse

Data Sources:
Associated Mining Consultants Ltd., 2005: Geophysical report on electromagnetic
and induced polarization / resistitity surveys carried out at Mount Polley Mine
property; British Columbia Ministry of Energy, Mines and Petroleum Resources, Assessment Report 27894, 77 pages.

100 m depth slice of resistivity from an inversion model of all of the data.

Mount Polley orebodies
(Rees et al., 2014)
$-8,7^{2}$

SCALE 1:20,000
$\stackrel{+}{O}$
Data Sources:
Associated Mining Consultants Ltd., 2005: Geophysical report on electromagnetio And induced polarization / resistivity surveys carried out at Mount Polley Mine property; British Columbia Ministry of Energy, Mines and Petroleum Resources, Assessment Report 27894, 77 pages.

Data Sources:
McNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and drilling report on the BJ, Bootjack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A/12E; British Columbia Ministry of Energy and Mines
Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry Deposits Project, Mineral Deposit Research Unit, University of British Columbia.

This soil geochemistry data is extracted from a 1986 report on a B-horizon soil
geochemistry survey over the pre-mining surface in the Mount Polley area. E $\& B$ Explorations Inc. sampled 4773 sites and analyzed for Au by AAS, and $\mathrm{Cu}, \mathrm{Ag}, \mathrm{CO}$ $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}$, and Zn by ICPMS.

Cu

percentile ppm
0.50 - 0.50
-75 51-144
75-90 ○ 145-288
90-95 $289-483$
$95-98 \bigcirc 484-1184$
$98-100 \bigcirc 1$ 185-14337
limit of elevated copper

SCALE 1:20,000

kilometres

Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

Data Sources:
McNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and drilling report on the BJ, Bootjack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A/12E; British Columbia Ministry of Energy and Mine Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry
Deposits Project, Mineral Deposit Research Unit University of British Columbia

Data Sources:
McNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and driling report on the BJ, Bootijack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A/12E; British Columbia Ministry of Energy and Mines
Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by:
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry Deposits Project, Mineral Deposit Research Unit, University of British Columbia.

Data Sources:
McNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and driling report on the BJ, Bootijack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A/12E; British Columbia Ministry of Energy and Mines
Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry Deposits Project, Mineral Deposit Research Unit, University of British Columbia.

This soil geochemistry data is extracted from a 1986 report on a B-horizon soil
geochemistry survey over the pre-mining surface in the Mount Polley area. E\&B geochemistry survey over the pre-mining surface in the Mount Poliey area. E\&B
Explorations Inc. sampled 4773 sites and analyzed for Au by AAS, and Cu, Ag, Co $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}$, and Zn by ICPMS.

Mo

${ }_{0.50}{ }_{0}^{\text {ppo }}$

- $50-0.00-.00$

5-90 -1.91 - 2.00
$90-95 \bigcirc 2.01-4.00$
$95-98 \bigcirc 4.01$ - 13.00
98 -100 ${ }^{13.00-68.01}$
limit of elevated copper

590000

Data Sources:
McNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and drilling report on the BJ, Bootjack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A/12E; British Columbia Ministry of Energy and Mines
Assessment Report No 16.040, Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry Deposits Project, Mineral Deposit Research Unit, University of British Columbia.

This soil geochemistry data is extracted from a 1986 report on a B-horizon soil
geochemistry survey over the pre-mining surface in the Mount Polley area. E\&B
Explorations Inc. sampled 4773 sites and analyzed for Au by AAS, and $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Co}$, $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}$, and Zn by ICPMS

As

percentile ppm
$0.50-0.0-4.0$
$50-75 \bigcirc 4.1-6.9$
$75-90 \bigcirc 7.0-8.0$
$90-95 \bigcirc 8.1-9.0$
${ }_{95} 98 \bigcirc_{98}^{9.1-13.5}$
98 -100 ${ }_{13.6-197.0}$
limit of elevated copper

Data Sources:
McNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and drilling report on the BJ, Bootiack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A//22; British Columbia Ministry of Energy and Mines
Assessment Report No. 16,040, 267 pages. Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry Deposits Project, Mineral Deposit Research Unit, University of British Columbia.
his soil geochemistry data is extracted from a 1986 report on a B-horizon soil
geochemistry survey over the pre-mining surface in the Mount Polley area. E\&B Explorations Inc. sampled 4773 sites and analyzed for Au by AAS, and Cu, Ag, Co
$\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}$, and Zn by ICPMS.

Cr

percentile ppm
0.50 - 0.30
$50-75 \bigcirc{ }^{31-37}$
$75-90 \bigcirc 38-44$
$90-95 \bigcirc 45-52$
$95-98 \bigcirc 53-67$
$98-100 \bigcirc 68-236$

Copper Grade Contours (Rees et al., 2014)

- limit of elevated copper

Data Sources:
MCNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and drilling report on the BJ, Bootiack, CB and Polley mineral claims, Cariboo
Mining Division, NTS 093A/12E; British Columbia Ministry of Energy and Mines Mining Division, NTS 093A/12F; British Columbia Ministry of Energy and Mines
Assessment Report No. 16,040, 267 pages. Assessment Report No. 16,040, 267 pages.
igital geochemistry data provided by
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry
Deposits Project, Mineral Deposit Research Unit, University of British Columbia.
his soil geochemistry data is extracted from a 1986 report on a B-horizon soil Explorations Inc. sampled 4777 sites and analyzed for Au by AAS, and Cu, Ag, Co,

Cr , $\mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}$, Pb , and Zn by ICPMS .

Ni

percentile
0.50 $\quad \begin{aligned} & \text { ppm } \\ & 0.0-19.9\end{aligned}$
0.50 - $0.0-19.9$
$50-75 \bigcirc 20.0-26$
75-90 ${ }^{-26.8-31.9}$
90 -95 ${ }^{2} 2.0-37.0$
$95-98 \bigcirc 37.1$ - 4.0
$98-100 \bigcirc 49.1-233.0$

Copper Grade Contours (Rees et al., 2014)
limit of elevated copper

Data Sources:
McNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and drilling report on the BJ, Bootjack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A/12E; British Columbia Ministry of Energy and Mines
Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by:
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry Deposits Project, Mineral Deposit Research Unit, University of British Columbia.
his soil geochemistry data is extracted from a 1986 report on a B-horizon soil
Explorations Inc. sampled 4773 sites and analyzed for Au by AAS, and Cu, Ag, C
$\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}$, and Zn by ICPMS

Co

percentile ppm
0.50 - $0.0-10.9$

50-75 - 11.0-13.0
90 13.1-15
$90-95 \bigcirc$ 16.0-17.9
5-98 18.0-22.7
98 -100 $\bigcirc 22.8$-68.

Copper Grade Contours (Rees et al., 2014)
limit of elevated copper

Data Sources:
MCNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and drilling report on the BJ, Bootjack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A//22; British Columbia Ministry of Energy and Mines
Assessment Report No. 16,040, 267 pages. Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by
red Blaine, Geochemical Exploration Models for British Columbia Porphyry Deposits Project, Mineral Deposit Research Unit, University of British Columbia

This soil geochemistry data is extracted from a 1986 report on a B-horizon soil
geochemistry survey over the pre-mining surface in the Mount Polley area. E\&B geochemistry survey over the pre-mining surface in the Mount Poliey area. E\&B
Explorations Inc. sampled 4773 sites and analyzed for Au by AAS, and Cu, Ag, Co $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}$, and Zn by ICPMS

Pb

$$
\begin{aligned}
& \text { percentile ppm } \\
& 0-50 \text { - 0.0-12.0 } \\
& \text { 50-75 ○ } 12.1 \text { - } 15 . \\
& \text { 75-90 ○ 15.1-17.0 } \\
& 90-95 \bigcirc 17.1-20.0 \\
& { }_{98-100}{ }^{95-98} \bigcirc \frac{20.1-27.0}{27.1-78.0}
\end{aligned}
$$

Data Sources:
McNaughton, K., 1987: Cariboo-Bell Project, 1986 Geochemical, geophysical and drilling report on the BJ, Bootjack, CB and Polley mineral claims, Cariboo Mining Division, NTS 093A/12E; British Columbia Ministry of Energy and Mines
Assessment Report No 16.040, Assessment Report No. 16,040, 267 pages.

Digital geochemistry data provided by
Fred Blaine, Geochemical Exploration Models for British Columbia Porphyry
Deposits Project, Mineral Deposit Research Unit, University of British Columbia Fred Blaine, Geochemical Exploration Models tor British Columbia Porphyry
Deposits Project, Mineral Deposit Research Unit, University of British Columbia.

This soil geochemistry data is extracted from a 1986 report on a B-horizon soil
geochemistry survey over the pre-mining surface in the Mount Polley area. E\&B geochemistry survey over the pre-mining surface in the Mount Poliey area. E\&B
Explorations Inc. sampled 4773 sites and analyzed for Au by AAS, and Cu, Ag, Co $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Pb}$, and Zn by ICPMS

Zn

percentile ppm
0.50 - $25-76$

50-75 - 77-109
$75-90 \bigcirc 110-140$
$90-95 \bigcirc 141-175$
$95-98 \bigcirc 176-237$

Opper Grade Contours (Rees et al., 2014)
limit of elevated coppe

kilometres

Universal Transverse Mercator Projection NAD 83 Datum, Zone 10

