
Machine-Learning Analysis of Factors Influencing Induced Seismicity
Susceptibility in the Montney Play Area, Northeastern British Columbia

(NTS 093P, 094A, B, G, H)

A. Amini, Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia,

Vancouver, British Columbia, aamini@eoas.ubc.ca

E. Eberhardt, Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia,

Vancouver, British Columbia

Amini, A. and Eberhardt, E. (2021): Machine-learning analysis of factors influencing induced seismicity susceptibility in the Montney
play area, northeastern British Columbia (NTS 093P, 094A, B, G, H); in Geoscience BC Summary of Activities 2020: Energy and Water,
Geoscience BC, Report 2021-02, p. 45–56.

Introduction

Unconventional gas resources represent an emerging low-

cost, clean-burning energy source, the export of which

presents both a greener transition option to replace more

carbon-intensive fossil fuels like coal and a key economic

opportunity for British Columbia (BC) and Canada. In

northeastern BC, new discoveries and advancements in ex-

traction technologies have led to resource estimates of

94.5 trillion m3 (3337 tcf) of gas-in-place (BC Oil and Gas

Commission, 2018), enough to support development and

export operations for more than 150 years. However, with

the development of these new resources comes new chal-

lenges. Amongst these are public, First Nations and regula-

tor concerns regarding induced seismicity associated with

hydraulic fracturing and wastewater injection operations.

Both activities involve the injection of large volumes of flu-

ids into deep geological formations, which serve to create

localized increases in pore pressures and stress changes

acting on critically stressed faults, resulting in fault slip and

induced seismicity. Notable induced events in northeastern

BC include one magnitude (M) 4.4 and two M 4.6 events

between 2014 and 2018.

In response to these events, and other environmental con-

cerns, the BC government appointed a scientific panel to re-

view hydraulic fracturing practices and their impacts (Sci-

entific Hydraulic Fracturing Review Panel, 2019). In their

review, a key knowledge gap was identified in relation to

induced seismicity susceptibility. In particular, the effects

of different geological and operational factors on the spa-

tial and temporal distribution of events are not well under-

stood and vary in importance for different unconventional

gas plays. Although separating geological from operational

factors is a complex task, it is also recognized that a massive

amount of geological, operational and seismic data are be-

ing collected from hydraulic fracturing activities for which

robust analysis methods are needed. The rapid develop-

ment of multivariate statistical and machine-learning tech-

niques to analyze large datasets makes the application of

these techniques to this problem especially attractive and

conducive, although there is not a lot of experience yet in

applying these to induced seismicity hazard assessments

(i.e., likelihood, severity, etc.), especially in analyzing both

operational and geological parameters together. Distin-

guishing between these factors is of interest as the influence

of geological factors on induced seismicity susceptibility

for a given formation being targeted cannot be controlled or

manipulated (outside of avoidance), whereas many

operational factors (i.e., well completion related) can be

controlled to some extent offering a means to potentially

mitigate induced seismicity hazards for a susceptible

formation.

Presented in this paper are the preliminary results of re-

search (Geoscience BC project 2019-014) investigating the

development of induced seismicity susceptibility maps to

aid decision makers with their planning of hydraulic frac-

turing activities and managing of induced seismicity haz-

ard. To accomplish this, machine-learning techniques will

be integrated with mechanistic validation using controlled

laboratory experiments and three-dimensional (3-D) nu-

merical modelling (to account for cause and effect relation-

ships). The results presented here are from the first phase of

this work, the application of different machine-learning al-

gorithms to determine the relative importance of several

geological and operational parameters (termed feature im-

portance) in relation to the triggering of induced seismicity.

This is done for data compiled for the Montney Formation

in northeastern BC. The algorithms applied and compared

include the decision-tree, random-forest and gradient-

boost methods. In addition to testing the robustness of these

algorithms through a comparative analysis, guidance is

provided in the use of machine learning to identify influ-

encing factors as a step toward developing induced seismi-

city susceptibility maps.

Geoscience BC Report 2021-02 45

This publication is also available, free of charge, as colour digital
files in Adobe Acrobat® PDF format from the Geoscience BC web-
site: http://geosciencebc.com/updates/summary-of-activities/.



Background

A significant increase in the seismicity rate in western Can-

ada in recent years has been associated with the develop-

ment of unconventional oil and gas resources, including the

related activities of hydraulic fracturing (Bao and Eaton,

2016) and wastewater disposal (Schultz et al., 2014). There

are numerous operators conducting these activities, each

using different operational parameters (e.g., fluid injection

volumes and rates) tailored for the local geological setting

and targeted formation, as well as further shaped by in-

house objectives, experiences and optimization efforts.

This raises the question of what are the cause and effect re-

lationships of these parameters on induced seismicity sus-

ceptibility and magnitude distribution? The question of

susceptibility addresses the likelihood that a particular well

will generate induced seismicity; this can be viewed as a

classification problem (seismogenic or not seismogenic).

The question of magnitude distribution addresses the po-

tential severity.

With respect to operational parameters, it has been argued

that the moment release attributable to induced earthquakes

is related to the net volume of the injected fluid, with empir-

ical trends established that link an upper limit for the mo-

ment magnitude to injection volume (Hallo et al., 2014;

McGarr, 2014). The data analyzed in these studies included

a mix of hydraulic fracturing and wastewater disposal ac-

tivities in sedimentary rocks and enhanced geothermal-de-

velopment activities in crystalline rocks, combining data

from Europe, the United States and Australia. Weingarten

et al. (2015) carried out a similar study combining informa-

tion on injection wells from public databases with available

earthquake catalogues and concluded that injection rate is

the most important operational parameter affecting induced

seismicity. Their study focused on data from hydraulic frac-

turing and wastewater disposal activities in the eastern and

central United States. For the Western Canada Sedimentary

Basin (WCSB), where the Montney Formation is situated,

different studies have shown that injection volume is asso-

ciated with induced seismicity (Schultz et al., 2014; Babaie

Mahani et al., 2017). Schultz et al. (2018) investigated the

relationship between injection parameters and induced

seismicity in the Duvernay shale play in Alberta and con-

cluded that events are associated with completions that

used larger injection volumes and that seismic productivity

scales linearly with injection volume. Their analysis further

showed that the wellhead injection pressure and rate have

an insignificant association with seismic response, and that

geological factors account for the variability in induced

seismicity susceptibility observed in the region.

With respect to geological parameters, Göbel (2015) com-

pared several fluid injection operations in California and

Oklahoma and examined the temporal and spatial varia-

tions in their induced seismicity responses. His results sug-

gest that operational parameters for fluid injection are

likely of secondary importance and that the primary con-

trols on seismicity induced by injection are the site-specific

geology and geological setting. Van der Baan and Calixto

(2017) compared current and historic seismicity rates in six

states in the United States and three Canadian provinces to

past and present oil and gas production. Their study showed

that in addition to injection volumes, local- and regional-

scale geology and tectonics influenced earthquake hazard

susceptibility. Amini and Eberhardt (2019) similarly com-

pared induced seismicity and well data for several key

North American unconventional gas plays, with a focus on

magnitude distribution relative to differences in the tec-

tonic in situ stress regime. They found that stress regime

has a significant influence on event magnitude with a thrust

fault stress regime, as exists in parts of the Montney play

area, being more susceptible to large magnitude events

compared to a strike-slip or normal fault stress regime.

In Oklahoma, Shah and Keller (2017) combined geophysi-

cal and drillhole data to map subsurface geological features

in the Precambrian crystalline basement and found that

most induced seismicity events are located where the crys-

talline basement is likely composed of fractured intrusive

or metamorphic rock; areas of extrusive rock or thick sedi-

mentary cover (>4 km) exhibited little induced seismicity.

They concluded that the differences in seismicity may be

due to variations in permeability structure; within intrusive

rocks, fluids can become narrowly focused in fractures and

faults, causing a concentrated increase in local pore fluid

pressures, whereas more distributed pore space in sedimen-

tary and extrusive rocks may relax pore fluid pressures.

Hincks et al. (2018) developed an advanced Bayesian net-

work to model joint conditional dependencies between spa-

tial, operational and seismicity parameters in Oklahoma.

They found that injection depth relative to crystalline base-

ment most strongly correlates with seismic moment release

and that the combined effects of depth and volume are criti-

cal, as injection rate becomes more influential near the

basement interface. Similar findings were reported by

Skoumal et al. (2015) and Currie et al. (2018) for hydraulic

fracturing operations in Ohio. The latter showed that seis-

micity occurred along faults below the injection interval in

the crystalline basement. From seismic reflection lines,

they showed that these fault systems intersected the

injection interval targeted by the well, providing perme-

ability pathways for fluid pressure increases leading to

fault slip.

Specific to the geology of the WCSB, Schultz et al. (2016)

found that hypocentres of induced seismicity clusters in Al-

berta coincided with the margins of the Devonian carbonate

reefs and interpreted this spatial correspondence as the re-

sult of geographically biased activation potential, possibly

as a consequence of reef nucleation preference to paleo-

bathymetric highs associated with Precambrian basement
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tectonics. Their work provided evidence that in some areas

Paleozoic and Precambrian strata are likely to be in hydrau-

lic communication, which points to the important role of re-

gional- and local-scale geological factors in the nature of

induced seismicity. Eaton and Schultz (2018) also sug-

gested natural processes involving the transformation of

organic material (kerogen) into hydrocarbons and cracking

to produce gas can cause fluid overpressures resulting in an

increased susceptibility to induced seismicity. They pre-

sented two examples from the WCSB where induced seis-

micity attributed to hydraulic fracturing is strongly clus-

tered within areas characterized by high pore-pressure

gradients.

The above examples highlight the importance of different

operational and geological factors on induced seismicity,

but do so from the perspective of studying the influence of a

single factor. It is unlikely, however, that a single causative

factor is solely responsible for an induced seismicity event.

Instead, multiple factors can play an influencing role.

Therefore, it is important to consider and understand the

cause and effect relationships of different operational and

geological factors on the spatial and temporal distribution

of induced seismicity events. However, this is not a simple

task and requires probing a wide variety of linear and non-

linear associations and interaction terms between factors

affecting induced seismicity without assuming a priori

knowledge on the nature of the relationships between these

factors.

The use of machine learning and data analytics are quickly

evolving as a means to identifying hidden patterns and ex-

tracting information from large datasets. In the geosciences

and rock engineering, they have been applied to predicting

rockburst potential in deep mines (Ribeiro e Sousa et al.,

2017; Pu et al., 2018) and squeezing behaviour in deep tun-

nels (Sun et al., 2018), as well as developing geological

maps using remote sensing data (Cracknell and Reading,

2014) and analyzing data from rock testing (Millar and

Clarici, 1994) and blasting (Liu and Liu, 2017). In the con-

text of earthquake seismology, machine learning has been

applied to a variety of problems such as laboratory earth-

quake identification (Rouet-Leduc et al., 2017) and fore-

casting (Panakkat and Adeli, 2009). Building on these stud-

ies, it is recognized that a massive amount of geological,

operational and seismic data are being collected with hy-

draulic fracturing activities, and the size and complexity of

these datasets have made traditional empirical and statisti-

cal analyses inefficient and ineffective. This has led to re-

cent studies by Pawley et al. (2018) who combined tec-

tonic, geomechanical and hydrological data with induced

seismicity data, related to hydraulic fracturing operations

in the Duvernay play in Alberta, to train a logistic regres-

sion algorithm to map and develop an induced seismicity

potential map. Their results suggest that the proximity to

basement, formation overpressure, minimum horizontal

stress, proximity to reef margins, lithium concentrations

and natural seismicity rate are the dominant contributing

factors/indicators to triggering induced seismicity within

the study area. Zhang et al. (2020) used machine learning

on real-time induced seismicity data to locate small events

in Oklahoma by accessing seismic waveform data from a

regional network. They designed a fully convolutional net-

work (FCN), to predict a 3-D image of the earthquake loca-

tion probability from a volume of input data recorded at

multiple network stations. Their results showed that the de-

signed system is capable of locating small events of local

magnitude (ML) �2.0 with a mean epicentre error of 4 to

6 km.

Data Compilation and Preparation

A database of 16 945 hydraulic fracturing stages from 1244

horizontal wells within the Montney Formation (from 2014

till end of 2016) was compiled and analyzed using multiple

sources that reported well activities in northeastern BC (BC

Oil and Gas Commission, 2018; geoLOGIC systems ltd.,

2019). This was combined with a second database that in-

cluded a comprehensive earthquake catalogue compiled

for northeastern BC and western Alberta (Visser et al.,

2017). This was produced specifically to study induced

seismicity in this region and consists of 4916 events for the

period of January 2014 to December 2016 with a magni-

tude of completeness (ML) of 1.8.

To prepare the data for analysis using a supervised ma-

chine-learning algorithm (as discussed in the next section),

it was necessary to determine the output labels. Here, in-

duced seismicity was considered as a binary-classification

problem with respect to the observed seismic activity.

Wells were classified as being either ‘aseismic’or ‘seismic’

based on spatial and temporal correlations with hydraulic

fracturing operations. This was done by cross-correlating

the earthquake catalogue with the well database and apply-

ing a series of spatial and temporal filters to identify the

subset of earthquake events that are likely induced seismic-

ity events related to hydraulic fracturing. The first step was

to clip the data to only include earthquakes located within

the boundaries of the Montney play area in northeastern BC

and to filter out events spatially associated with anthropo-

genic activities that are not related to oil and gas activities,

such as those from mining and construction (e.g., blasting).

This step reduced the total number of events being consid-

ered from 4916 to 2867. Next, a spatial filter was applied to

search for all event locations that were within a 5 km radius

of an active hydraulic fracturing well. The 5 km radius rep-

resents the uncertainty in the event location accuracy re-

ported for the earthquake catalogue. To this, a three-month

temporal filter was applied (see Atkinson et al., 2016).

Thus, if the epicentre of an earthquake event was recorded

as occurring within 5 km from the surface location of an ac-

tive well and within three months from the start date of the
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hydraulic fracturing activity, it was considered here to be an

induced seismicity event and the corresponding well was

classified as being seismogenic. This resulted in a subset of

543 events identified as induced seismicity events.

The input parameters for the machine-learning analysis, re-

ferred to herein as features (using the term common to ma-

chine learning), were selected from available geological

and operational data for the Montney Formation. For the

geological features such as distance to basement, if data

was not available for a given well, values were interpolated

using the average of the three closest wells. The operational

features were treated differently as only wells that had com-

plete data throughout all features were included. This re-

sulted in data for 11 415 stages out of 16 945 being used for

the machine-learning analysis. The input features are

described in Table 1.

The interpolated pore-pressure gradients ranged from 5.4

to approximately 18 kilopascals per metre (kPa/m). In addi-

tion to the reservoir pore pressure, information regarding

the maximum horizontal stress (SHmax) direction was in-

cluded. This was calculated for each well based on SHmax

azimuths extracted from the World Stress Map database

(Heidbach et al., 2018) and interpolated for each well. Two

different values were investigated: 1) the difference be-

tween the local SHmax and the horizontal well azimuths; and

2) the difference between the local and regional SHmax azi-

muths, where N45°E was assumed to be the regional SHmax

direction in the Montney play area. Injection depth (total

vertical depth [TVD]) was also considered as a proxy for

the magnitude of stresses in this region. Specific to the local

geology, the vertical distance between the injection depth

and the top of the Montney and Debolt formations were

considered, together with the distance to the Precambrian

crystalline basement. For these, a negative value indicates

an injection depth above the formation top/basement and a

positive value refers to below the formation top. It should

be noted that there is a high degree of uncertainty in the in-

terpolated values for the top of the basement due to a lack of

direct borehole measurements (from vertical wells). Lastly,

the two-dimensional (2-D) distance from the well to the

closest mapped fault (Hayes et al., 2021) was included.

This was taken as the shortest horizontal distance between

the wellhead and closest fault. In this analysis, no cutoff

value for distance to fault was considered.

Machine-Learning Algorithm Development

Machine learning can be undertaken using supervised or

unsupervised algorithms. Supervised learning is where the

input features and an output result are given, and an algo-

rithm is used to learn the mapping function between these.

The goal is to approximate the mapping function so well

that for any new input data, the output can be predicted for

that specific data. This contrasts with unsupervised learn-

ing where only the input data is known, and no correspond-

ing output variables are given. The goal for unsupervised

learning is to model the underlying structure or distribution

in the data in order to learn more about the data. For this

study, supervised learning was used for the initial data anal-

ysis to identify which wells were associated with induced

seismicity and which were not. These represent the correct

answers to the classification problem for training the map-

ping function; the corresponding data associated with each

set of wells is referred to as the training data.

Three different supervised machine-learning algorithms

were used that are generally considered to be robust for

classification problems: decision tree, random forest and

gradient boost (Hastie et al., 2017). These methods were

chosen because of the ease of interpretability of their results

and also because they are not sensitive to the scale of input

data. The objective of the algorithm is to iteratively make

predictions on the training data and to correct these until the

algorithm achieves an acceptable level of performance.

Decision trees are a nonparametric supervised learning

method used for classification and regression. The goal is

to create a model that predicts the value of a target variable

by learning simple decision rules inferred from the data fea-

tures. Decision trees have two advantages: the resulting

model can easily be visualized and understood by non-ex-

perts, and the algorithms are completely invariant to scal-

ing of the data. As each feature is processed separately, and

the possible splits of the data do not depend on scaling, no

preprocessing of features is needed for decision-tree algo-

rithms. The main limitation of decision trees is that they

tend to over fit the data and provide poor generalization

performance.

A random forest is essentially a collection of decision trees,

where each tree is slightly different from the others. In a

random forest each tree might do a relatively good job of

predicting but will likely over fit part of the data. To reduce

the amount of overfitting, many trees are built, all of which

work well and over fit the data in different ways, and the re-

sults are averaged.

The gradient-boost regression tree is another ensemble

method that combines multiple decision trees to create a

more powerful model. This can be used for both regression

and classification. In contrast to the random-forest ap-

proach, gradient boosting works by building trees in a serial

manner, where each tree tries to correct the mistakes of the

previous one. The main idea is to combine many simple

models (known as weak learners) that can provide good

predictions on parts of the data, and so more and more trees

are added to iteratively improve performance.

All three machine-learning models were built using scikit-

learn, a Python library for machine learning (Pedregosa et

al., 2011). The data was divided into training and validation
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sets accounting for 75% and 25% of the full dataset, respec-

tively. The training dataset was further divided into training

and test sets, which were used to train the algorithm using

50-fold cross validations, with the training set accounting

for 98% of the training dataset and the test set for 2% at each

cross-validation run.

The training data was used to train and evaluate the opti-

mum tree depths of the three algorithms using 50-fold cross

validations. Figure 1 shows the results of 50-fold cross vali-

dations for each algorithm. At each run, the accuracy of the

model for a specific tree depth is calculated. In these figures

the orange line represents the accuracy of the training set.

The blue line shows the mean cross-validation accuracy

and the shaded area represents the confidence interval (±2

standard deviations) for the calculated means. For these

plots, an accuracy of 1 represents 100% accuracy. This de-

termines if the training set is over fitted, and alongside this,

it determines the optimal tree depth based on the confi-

dence interval. Based on the cross-validation results, the

tree depths of 16, 12 and 8 were chosen for the decision-

tree, random-forest and gradient-boost algorithms,

respectively.

Machine-Learning Results

Feature Importance

The results of the cross validations using each algorithm

were further analyzed to investigate the importance of each

feature on the classification outcome. Figure 2 shows the

feature importance calculated using each of the three classi-

fication algorithms. The bars are colour coded to differenti-

50 Geoscience BC Summary of Activities 2020: Energy and Water
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a) decision tree, b) random forest and c) gradient boost. An accuracy of 1 represents 100% accuracy.



ate features that relate to the geology from those that are

operational. The importance of each feature is indi-

cated as a coefficient; these coefficients do not have a

physical meaning and are compared based on the

relative values and not the absolute values.

Based on the results from the decision-tree analysis, the

high importance features were determined to be pore-

pressure gradient, distance to basement, well comple-

tion length, azimuth difference between the local and

regional SHmax orientation and distance to faults. Four

of these five features also form the top five ranked fea-

tures from the random-forest analysis, although in a

slightly different order and with injection depth replac-

ing azimuth difference between the local and regional

SHmax as being of higher importance. For the gradient-

boost analysis, again four of these features were ranked

in the top five, the exception being that this model

showed a higher sensitivity to the horizontal well direc-

tion than the completion length. The gradient-boost

model also showed very high sensitivity to azimuth dif-

ference between the local and regional SHmax and azi-

muth difference between local SHmax and horizontal

well direction compared to other features.

Overall, the features consistently ranked as being

highly influential by all three machine-learning algo-

rithms were pore-pressure gradient, distance to faults

and distance to basement. In all models the same group-

ings of operational features were observed; injection

rate and maximum injection pressure were ranked low-

est in importance, and injection volume ranked in the

middle. This is an interesting result because injection

rate and volume are often cited as operational features

that have a significant influence on induced seismicity

(McGarr, 2014; Schultz et al., 2018). This appears to

hold partly true in the case of injection volume, but op-

erational features such as well completion length and

injection depth, which have not been thoroughly

studied, appear to have a stronger correlation with in-

duced seismicity.
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Figure 2. Feature importance calculated using three different
supervised machine-learning algorithms: a) decision tree,
b) random forest and c) gradient boost. Blue indicates opera-
tional features and green indicates geological features. The
coefficient does not have a physical meaning and is com-
pared based on the relative values. Feature abbreviations:
Az_diff_L_R, local and regional maximum horizontal stress
azimuth difference; Az_diff_L_W, local maximum horizontal
stress and horizontal well azimuth difference; Comp_Len,
well completion length; D_Base, distance from injection depth
to basement; D_Deb, distance from injection depth to top of
Debolt Fm.; D_Mont, distance from injection depth to top of
Montney Fm.; Dist_F, distance from wellhead to faults; Inj.
Depth, injection depth; Max_P, maximum injection pressure;
PP_grad, pore-pressure gradient; Rate, average injection
rate; Volume, stage injection volume.



Model Validation

To validate the trained algorithms, they were next applied

to the test data that was set aside to evaluate each model’s

performance. The test data comprised 25% of the full

dataset and was not previously used to train the algorithms.

To evaluate the performance of each algorithm, a confusion

matrix was calculated. Also known as an error matrix, the

confusion matrix allows visualization of the performance

of a supervised machine-learning algorithm by reporting

the number of true and false positives and true and false

negatives. These are based on predictions using the test

data relative to the mapping functions determined from the

training data. In this case, a true positive would be a correct

prediction that a well is associated with induced seismicity

and a true negative would be a correct prediction that the

well is not. Similarly, a false positive would be the incorrect

prediction of a well being associated with induced seismic-

ity where there was none, and a false negative would be an

incorrect prediction of a well not being associated with

induced seismicity when it was.

The results from calculating a confusion matrix for each al-

gorithm are shown in Figure 3. Comparing these, the ran-

dom-forest and gradient-boost classifiers performed

slightly better than the decision-tree classifier. However, all

three models performed with a very high accuracy (97–

98%).

To further interpret the results, a SHapley Additive exPla-

nations (SHAP) analysis was run. The SHAP is a game the-

ory approach used to help interpret predictions from com-

plex models, for example the output from machine-

learning models. The SHAP assigns each feature an impor-

tance value for a particular prediction and shows there is a

unique solution for each class of additive feature impor-

tance that adheres to desirable properties (Lundberg and

Lee, 2017). The SHAP TreeExplainer tool is a subcategory

of SHAP that is specifically built for interpreting tree mod-

els, such as decision trees and random forests. The SHAP

value plot can show the positive and negative relationships

of the predictors with the target variable. The analysis pre-

sented here is for the random-forest model as it performed

slightly better than the decision-tree model.

Figure 4 presents the summary plot from the SHAP analy-

sis, which combines feature importance with feature im-

pact. Based on this plot, the following information can be

gained. First, each feature is ordered according to its impor-

tance (starting with the most important at the top). Note that

the SHAP plot is calculated for one instance of the random-

forest model, whereas the ranking of feature importance in
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Figure 3. Confusion matrices comparing predicted versus actual
results for the a) decision-tree, b) random-forest and c) gradient-
boost trained models. Abbreviations: IS, induced seismicity
events; No-IS, no induced seismicity events.



Figure 2 is based on an averaging of 50-fold cross-valida-

tion runs. Thus, the order of feature importance between the

two is slightly different. Next, points are plotted to show the

distribution of the SHAP values using colour to represent

the feature value and stacking of overlapping points in the

y-axis direction to give a sense of the distribution of the

SHAP values. From this, the impact (both positive and neg-

ative) is shown through the horizontal location of stacking,

which shows whether the effect of that value is associated

with a higher or lower prediction. This can be compared to

whether the value for that variable/observation is high (red)

or low (blue). For example, it can be seen that high values of

completion length have a high positive impact on the qual-

ity rating. The high values related to this feature are indi-

cated by the red colour of the points, and the high positive

impact is shown by its extent on the x-axis.

The results of the SHAP feature importance analysis of the

random forest model help to validate the meaningfulness of

the algorithm results. Inspecting both Figures 2 and 4, it can

be seen that key influencing features such as completion

length, pore-pressure gradient and injection depth have a

positive correlation with induced seismicity. The influence

of pore pressures in the Montney Formation has been stud-

ied by Eaton and Schultz (2018), who demonstrated a posi-

tive relationship between overpressured areas and induced

seismicity. The positive correlation of completion length is

also valid as higher completion lengths correspond with

larger stimulated volumes and therefore a higher probabil-

ity of adversely interacting with a critically stressed fault.

Features such as distance from the basement or distance to a

known fault have negative correlations, meaning shorter

distances between the injection point and basement or fault

increase the likelihood of triggering an induced seismicity

event.

Discussion

Machine-learning models are highly dependent on the

quality and quantity of the input data. For the analyses pre-

sented here, for a feature where data was either limited or

the spatial distribution and/or coverage of the data was

sparse relative to the distribution of the wells, this was com-

pensated for by using linear interpolation. However, large

distances between points can reduce the accuracy of inter-

polation, as can the interpolation method itself (e.g., as-

signing linear versus nonlinear weightings). With time, as

new data becomes available, including that for features not

included in this study, the induced seismicity susceptibility

model can be updated to improve its predictive capabilities.

Based on the results obtained, an interesting observation is

the correlation of injection volume and SHAP values. As

can be seen in Figure 4, high injection volumes have a nega-

tive correlation with triggering induced seismicity. This

might be interpreted as high injection volumes reduce the

risk of induced seismicity, which is counter to general expe-

rience. Thus, empirical analyses and machine-learning data

correlations for feature analysis do have their limitations

and should be constrained by an understanding of the

physics of fault slip and induced seismicity mechanisms.
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Figure 4. Results for a SHapley Additive exPlanations (SHAP) feature importance analysis using the random-
forest trained model. Feature abbreviations: Az_diff_L_R, local and regional maximum horizontal stress azi-
muth difference; Az_diff_L_W, local maximum horizontal stress and horizontal well azimuth difference;
Comp_Len, well completion length; D_Base, distance from injection depth to basement; D_Deb, distance from
injection depth to top of Debolt Fm.; D_Mont, distance from injection depth to top of Montney Fm.; Dist_F, dis-
tance from wellhead to faults; Inj. Depth, injection depth; Max_P, maximum injection pressure; PP_grad, pore-
pressure gradient; Rate, average injection rate; Volume, stage injection volume.



When comparing the ranking of feature importance, the de-

cision-tree and random-forest models provided similar re-

sults. In these models, high importance features included

the geological parameters of pore-pressure gradient, dis-

tance to basement and distance to faults. The operational

features of well completion length and injection depth were

also highly ranked by the random-forest model. For the gra-

dient-boost method, the ranking was slightly different with

the stress field showing greater influence, both with respect

to the geological feature of local and regional SHmax azimuth

difference and related operational feature of the horizontal

well and local SHmax azimuth difference. These differences

in ranking are related to how each algorithm works. Gradi-

ent-boost models are based on shallow trees (high bias, low

variance) and they reduce error mainly by reducing bias.

Bias is the simplifying assumptions made by a model to

make the target function easier to learn. In contrast, deci-

sion-tree and random-forest models use fully grown trees

(low bias, high variance) and they reduce the model’s error

by reducing variance. Variance is the amount that the esti-

mate of the target function will change if different training

data were used. For this problem, the source of bias is the

number of features that are used for classification, and by

including both operational and geological features, the

overall bias tends to be less than that if just considering one

or the other. The variance of the data can be calculated, and

as shown in Table 2, it is higher for parameters such as in-

jection volume and distance to faults whereas it is lower for

the two features related to the in situ stress. Thus, this

explains the differences between the gradient-boost results

and those from the decision-tree and random-forest

models.

The comparison of feature importance between the geolog-

ical and operational parameters show that, overall, the geo-

logical parameters generally ranked higher in importance.

In all models, the operational parameters of average injec-

tion rate and maximum injection pressure consistently

ranked as being the least influential. It should be noted that

the maximum injection pressure data analyzed was limited

to the pressure values measured at the wellheads. Another

parameter that is worth investigating is the bottom hole

pressure (BHP), which is more applicable to the influence

of injection pressure on triggering induced seismicity. The

compilation and analysis of BHP data is the subject of on-

going research as part of this project. The only operational

features ranked as being of high importance were the com-

pletion length and the horizontal well direction relative to

the SHmax azimuth. As was shown in Figure 4, completion

length had a positive correlation with seismicity and can be

thought of in terms of increasing the volume of the forma-

tion being stimulated by hydraulic fracturing. The larger

the stimulated volume, the higher the probability of

intersecting a fault (directly or indirectly).

Conclusions

The application of machine learning was investigated for

the purpose of ranking the influence of geological and op-

erational parameters on the classification problem of in-

duced seismicity susceptibility (i.e., distinguishing be-

tween wells that are associated with induced seismicity and

those that are not). Three different algorithms, decision

tree, random forest and gradient boost, were tested using

data related to hydraulic fracturing activities in the

Montney play area in northeastern British Columbia. All

models were initially trained on a subset of 75% of the total

data compiled using a 50-fold cross-validation analysis.

The remaining 25% of the data was used as a validation set

to test the trained models. The validation results showed a

high accuracy of successful predictions (97–98%) for all

three models.

The classification results were used to calculate the relative

importance of all features on whether a well had or had not

been associated with induced seismicity. Geological fea-

tures were differentiated from operational features as the

latter are of particular interest as they can be controlled or

manipulated to mitigate induced seismicity hazards. How-

ever, it was the geological features that generally rated

higher with respect to correlation with wells associated

with induced seismicity. In all models, pore-pressure gradi-

ent (hydrostatic versus overpressured) ranked highly as

having a major influence. For the decision-tree and ran-

dom-forest trained models, distance to basement and dis-

tance to known faults also ranked highly, whereas for the

gradient boost, the maximum horizontal stress azimuth was

a key geological feature that ranked highly. For the opera-

tional features, the completion length was the feature most

consistently ranked as being of high importance.

Overall, the results of these analyses agree with the current

understanding of features that influence induced seismicity

susceptibility, such as reservoir overpressure, stress regime

and injection volume to stimulate well productivity. These

point to the importance of understanding the geology of the

Montney Formation including the three-dimensional seis-

mic mapping of faults and taking in situ stress measure-

ments. The machine-learning algorithms investigated here

can be used to better understand induced seismicity by de-

termining and ranking the factors that influence induced
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Table 2. Variance of features that differ in rank based on the algo-
rithm used. The highly important features of the gradient-boost re-
sults (where local and regional maximum horizontal stress azimuth
difference [Az_diff_L_R] and local maximum horizontal stress and
horizontal well azimuth difference [Az_diff_L_W] are ranked in the
top five) are compared with distance to faults (Dist_F) and stage in-
jection volume (Volume). The values of variances reported are di-
vided by the mean for each feature in order to make them unitless for
comparison.



seismicity susceptibility and therefore further improve

industry practices and regulator oversight.

However, it is also recognized that machine-learning analy-

ses focus exclusively on prediction, bypassing the need for

explanations of causality that can add reasoning and confi-

dence to the results. The next steps in this research program

will be to add a step of refining the machine-learning output

through mechanistic validation using a combination of

controlled laboratory experiments and three-dimensional

numerical simulations to account for known cause and ef-

fect relationships. This will help to increase the reliability

of the results and deliver a more robust susceptibility map

to help decision makers with their planning of hydraulic

fracturing activities and induced seismicity hazard man-

agement, as well as identifying areas requiring additional

focused research.
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