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Introduction

The Lower Triassic Montney Formation of the Western
Canada Sedimentary Basin (WCSB) is a world-class un-
conventional resource with 450 Tcf gas reserves,
14 520 mmbbl natural gasliquidsreservesand 1125 mmbbl
oil reserves (National Energy Board, 2013). Although
commonly described asashale, theMontney Formationisa
siltstonein most of its subcrop. Unlike sandstone and shale
reservoirs, little is known about the diagenetic evolution
and pore development of siltstone reservoirs, and a better
understanding of diagenetic controlsonreservoir quality in
this type of reservoir is essential to improve resource and
reserve estimates and to maximize hydrocarbon recovery.
This work focuses on the deepest section of the Montney
Formation in British Columbia (BC). An isopach map of
the formation thickness and the location of the study area
arepresentedin Figure 1. In thisarea, the Montney Forma-
tion iswithin the gas window and highly mature (tempera-
tureat maximum release of hydrocarbons[ T ] is>470°C,
vitrinite reflectance [Ro] is 1.3%).

Diagenetic studies are crucial for understanding pore sys-
tem evolution and predicting reservoir quality. The objec-
tive of this paper isto describe the major authigenic phases
that are present in the Montney Formation siltstoneand in-
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terpret the temporal sequence of events leading to the con-
solidation of the formation.

Geological Background

The Montney Formation is a west-dipping clastic wedge,
deposited on the western continental shelf of Pangea. The
Montney Formation consistsof threethird-order sequences
prograding from east to west. In the western part of the ba-
sin, the Montney Formation istopped by amajor intra-Tri-
assicerosivesurfaceand overlain by thetransgressive Doig
Formation (Crombez, 2016). Theformation reachesamax-
imum thickness of 350 m adjacent to the Rocky Mountains
deformation front, and thins eastward to an erosional zero
edgeintheeast (Figure 1). The centre of the Montney For-
mation depositional basin was positioned at a paleolatitude
of approximately 30°N (Golonkaet a., 1994; Davieset al.,
1997; Deep Times Maps Inc.™, 2013), experiencing a
semi-arid to desert climate (Gibson and Barclay, 1989; Da-
visetal., 1997), and dominated by west winds (Edwards et
a., 1994; Golonkaet al., 1994).

Grain sizes in the Montney Formation range from silt to
very fine sand, with grains typically moderately to well
sorted, and subrounded to rounded (Davies et a., 1997,
Barber, 2003). Sorting and roundness indicate a predomi-
nantly aeolian transport mechanism with periodic fluvial
influence (Davies et al., 1997; Barber, 2003; Moslow and
Zonneveld, 2012). The mineralogy of the Montney Forma-
tion (highinfeldspar and detrital dolomite) supportsthein-
terpretations of an arid climate and suggests a depositional
model of wind-blown, recycled immature material origi-
nating from the quartz-rich shield in the east (Edwards et
al., 1994; Davies et a., 1997; Barber, 2003; Moslow and
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Figure 1. Isopach map of the thickness of the Montney Formation (mod-
ified from Edwards et al., 1994) and its location within the Western Can-
ada Sedimentary Basin (WCSB). Study area is marked by the black
star.

Zonneveld, 2012). Deposition of the Montney Formation
took place in an anoxic to dysoxic environment, with sev-
eral periods of higher oxygen levels evidenced by biotur-
bated intervals (Robbins, 1999; Nassichuk, 2000;
LaMothe, 2008; Zonneveld et a., 2010a, b, 2011; Moslow
and Zonneveld, 2012; Playter, 2013; Crombez, 2016;
Crombez et al., 2016).

Previous Work

Few diagenetic studies have been conducted on the Mont-
ney Formation. Davies et al. (1997) and Barber (2003)
studied diagenesis in the Montney Formation of west-cen-
tral Alberta(Sturgeon Lake South ‘F' pool), and Nassichuk
(2000), Chalmersand Bustin (2012) and Playter (2013) in-
vestigated the diagenetic sequences of the Montney Forma-
tion in northeastern BC. Investigation methods vary be-
tween studies, and paragenetic interpretations are
inconsistent. The major diagenetic phases described are
calcite, dolomite, feldspar and quartz cements. Pyriteisre-
ported to be widely present throughout the Montney For-
mation. Authigenic claysidentified arefibrousillite, chlor-
ite and glauconite, and diagenetic illitization of smectite.
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Secondary porosity resulted from grain dissolution (ar-
agonite, calcite, feldspar and quartz) or dedolomitiz-
ation (Playter, 2013). Carbonate cementation is usually
described asthe earliest pore-occluding event, followed
by quartz cement. Pyrite precipitation isthought to have
occurred moreor less continuously (Davieset al., 1997;
Playter, 2013). Authigenic clay precipitation occurred
in an intermediate stage, followed by quartz and feld-
spar dissol ution and asecond phase of carbonate (calcite
and/or dolomite) precipitation. Ducroset al. (2014) esti-
mated 2200 m of erosion above the Montney Formation
intheresearch areaduring the Laramide orogeny, bring-
ing the Montney Formation to amaximum burial depth
of approximately 4700 m. The modelled maximum
temperature for the Montney Formation at maximum
burial depth is 180°C (Vaisblat and Harris, 2016).

Dataset

Themajority of the samplesfor thisstudy were selected
from the Progress et al. Altares 16-17-083-25 wellcore
(universal well identifier 100161708325W600, BC Oil
and Gas Commission, 2016), which represents the en-
tire section of the Montney Formation at its thickest lo-
cation in the basin (sequences 1, 2 and 3 of Crombez et
al. [2016], equivalent to the lower and upper Montney
Formation). Sixty-eight samples were taken from this
core between 2258 and 2530 m. Fifteen additional sam-
pleswere made availablefor this study from the Suncor
PC HZ Kobes D-048-B/094-B-09 wellcore (universal well
identifier 200D048A094B0900, 200B079A094B0902),
representing Spathian age strata (Golding et al., 2015).
Those samples were the focus of the work done by
Playter (2013). Both wells are situated in the study area
(Figure 1).

Methods

Since grain size in the Montney Formation, particularly in
the deep section, isvery fine, standard thin section analysis
has proven ineffective for detailed diagenetic study. For
this reason, all analyses were carried out using a scanning
electron microscope (SEM).

Rock Composition

Sampleswere cut perpendicular to bedding, mounted in ep-
oxy and polished to expose a surface of approximately
1.5 cm? Inorganic rock composition of these samples was
determined by QEMSCAN® (Quantitative Evaluation of
Minerals by SCANning electron microscopy) at SGS Can-
ada Inc. (Vancouver, BC). The QEMSCAN method is
based on an FEI Company Quanta650 with multipleenergy
dispersive spectrometry (EDS) detectors. Mineral identifi-
cation was made by matching the spectral response with a
proprietary speciesidentification protocol (SIP), acompre-
hensivemineral library, whichincludesreference composi-
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tions and solid solution series. The composition of three
randomly selected sampleswas al so determined by quanti-
tative X-ray diffraction (XRD) analysis on ahomogenized
sample, representing approximately 10 cm of core. Clay
minerals expendability potential was determined using ori-
ented, glycolated mounts of the <2 um fraction. Analysis
was done at the James Hutton Institute (Aberdeen, Scot-
land). Whole rock X-ray powder diffraction patterns were
recorded from 3-70° 20, and clay mounts were recorded
from 3-45° 20, using copper Ko, radiation. Organic rock
composition, al so performed on ~10 cm homogenized sam-
ple, was obtained by LECO TOC (total organic carbon)
analysisat GeoMark Research, Ltd. laboratories (Houston,
Texas).

Diagenetic Phases

Both freshly broken surfaces and polished surfaces were
examined in order to identify the diagenetic phases present
intherock. Some of the sampleswere coated with gold and
examined on aJEOL Ltd. 6301F field emission SEM (FE-
SEM) with an accelerating voltage of 20 kilovolts (kV) at
the University of Alberta(Edmonton, Alberta). Other sam-
pleswere coated with carbon and examined onaZeisseVO
L S15 extended pressure SEM (EP-SEM) with an accel erat-
ing voltage of 20 kV, also at the University of Alberta. Ele-
mental content was determined using an energy dispersive
X-ray analyzer attached to the SEM.

Selected sampleswere polished with an E.A. Fischione In-
struments, Inc. 1060 SEM mill at 5 kV, 3° and continuous
rotation for three hours. Sampleswere examined on an FEI
Company Quanta 250 FEG with aGatan, Inc. MonoCL4™
detector (SEM-CL) at the University of Calgary (Calgary,
Alberta). For each sample, three or four areas were ran-
domly selected and analyzed for mineralogical composi-
tion and luminescence patterns. Image analysis was con-

ducted to differentiate mineral ogical and diagenetic phases
for each mineral.

Results and Morphological Observations

Sincethetwo well locations examined inthis study are <40 km
apart, results will be presented for both cores together.

Minerals present in the rock include quartz, feldspar, plag-
ioclase, carbonate minerals, pyrite, apatite, muscovite,
chlorite, mixed-layered illite-smectite (MLIS) and kaoli-
nite, and minor amounts of other sulphides and heavy min-
erals (Table 1). Total organic carbon valuesin the samples
rangebetween 0.5 and 4 wt. % with an average of 1.5wt. %.
Organic matter in the formation displays a wide spectrum
of morphologiesfrom nonporousto extremely porous. This
phenomenon was previously recognized in shales, and at-
tributed by Curtis et al. (2011) to differences in organic
matter composition.

Diagenetic Processes

Diagenetic processes were interpreted through a combina-
tion of compositional analysis, SEM-imaging observations
and cathodoluminescence image interpretation.

Porosity Occluding Processes
Compaction

Physical compaction followed by chemical compaction is
evidenced in all samples by pressure solutions of frame-
work grains, mainly quartz, feldspars and dolomite
(Figure 2).

Dolomite

Dolomite in the deep Montney Formation variesin origin
and composition. Detrital dolomite, evidenced by weath-
ered rounded cores, is surrounded by rhombs of authigenic
dolomitecement. Small rhombohedral dolomitecrystalsdo
not always contain a detrital core. At least seven genera-

Figure 2. Evidence for chemical compaction in Montney Formation, northeastern British
Columbia: a) backscattered electron (BSE) image of mica penetrating a quartz grain and
b) energy dispersive spectrometry (EDS) image of quartz grain (greenish-yellow) dissolv-
ing dolomite (light blue) with authigenic rims.
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Figure 3. Dolomite cement in the Montney Formation, northeastern British Columbia. a) Energy dispersive spec-
trometry (EDS) image of dolomite (light blue). b) Scanning electron microscope (SEM) cathodoluminescence (CL)
images of the crystals revealing complex internal structure with detrital rounded core and multiple rims. Some of
the internal rims are corroded. Note the nonluminescent Fe-rich rim (yellow arrows). c) An EDS image showing Fe-
rich external rim.

tions of dolomite cement wereidentified. Rimsdiffer in Ca
and Mg content (evidenced by HCI etching), with the outer-
most rim characterized by high Fe concentration (Figure 3).
Several of the internal rims show corroded edges (Fig-
ure 3c). In someintervals, Ca-phosphate was incorporated
into the dolomite structure. Dolomite dissolution is attrib-
uted to pressure solution (partially missing grain) or con-
tact with organic acids (ragged edges; Figure 4a). Second-
ary porosity is developed in detrital dolomite, particularly
along cleavage planes (Figure 4b).

Cdcite

Calcite appears as isolated grains, sometimes enclosing
large pyrite crystals (Figure 5a). The SEM-CL images
show that calcite is composed of two generations (Fig-
urebb). Calcitewasfound to replace K -fel dspar (Figure5c¢)
and dolomite (Figure 5d).

Ca-Phosphate (Apatite)

Ca-phosphateis present in the samples as grain-coating ce-
ment or nodules, and islocally incorporated into dolomite
cement.

Pyrite
Pyriteis present in all samples, forming framboids or large
crystals, and is commonly associated with organic matter.
Framboidsand crystalsrangefrom <1to 10 pmin diameter
(Figure 6).

K-Feldspar

Potassium-feldspar cement surrounds detrital K-feldspar
grainsasaone-phase cement (Figure 7a), or appearsasdis-
crete crystalswith several generations of cement separated
by dissolved ragged edges (Figure 7b). In addition, non-
luminescent K-feldspar isdetected in the centre of Na-feld-
spar and quartz grains (Figure 8). Most of theauthigenic K -
feldspar, though much darker than detrital K-feldspar in
SEM-CL images, is moderately luminescent.

- W G

YR

- ' m

Figure 4. Backscattered electron—scanning electron microscope (BSE-SEM) images showing dolomite dissolutionin
the Montney Formation, northeastern British Columbia: a) dissolution of dolomite grain edges where dolomite is in di-
rect contact with organic matter detrital grain and b) dissolution of detrital dolomite grain. Note preferred dissolution

along cleavage planes.
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Figure 5. Scanning electron microscope images of calcite cement in the Montney Formation,
northeastern British Columbia. a) Scanning electron microscope—energy dispersive spectrome-
try (SEM-EDS) image showing calcite (bright pink) enclosing pyrite crystals (white). b) Scanning
electron microscope—cathodoluminescence (SEM-CL) image showing two different generations
of calcite cement (different shades of blue) marked by arrows. c) An SEM-EDS image showing
calcite (bright pink) replacing K-feldspar (light pink). In this image calcite has replaced most of the
K-feldspar grain. Remaining K-feldspar is marked with arrows. d) An SEM-EDS image showing

calcite replacing dolomite grain.

Figure 6. Backscattered electron—scanning electron microscope
(BSE-SEM) image of a milled surface showing pyrite framboids
and crystals (white) of varying sizes (Montney Formation, north-
eastern British Columbia). Note association with organic matter
(OM, dark).
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Na-Feldspar

Inthedeep Montney Formation, Na-feldspar largely occurs
as detrital grains. Some samples contain nonluminescent
Na-feldspar overgrowths with sharp, straight edges—both
indicative of authigenic cement growth (Figure 9a). Nonlu-
minescent Na-feldspar al so replacesdetrital and authigenic
dolomite and detrital K-feldspar (Figure 9b, c). Sodium-
feldspar alterationisusually incompleteand easily identifi-
ablethrough EDS maps and backscattered electron (BSE)—
SEM images.

Quartz

In the deep part of the Montney Formation, authigenic
quartz occurs in three different morphologies: a) over-
growths, b) microcrystalline cements and ¢) amorphous
opainesilica (Figure 10).
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Figure 7. Scanning electron microscope—cathodoluminescence (SEM-CL) images of K-feldspar in
the Montney Formation, northeastern British Columbia: a) detrital K-feldspar (yellow arrow) sur-
rounded by K-feldspar cement (white arrows) and b) detrital rhombic K-feldspar showing cement rims
(yellow arrow).

Figure 8. Sample from Montney Formation, northeastern British Columbia showing K-feldspar replac-
ing Na-feldspar. a) Scanning electron microscope—energy dispersive spectrometry (SEM-EDS) im-
age. Na-feldspar is represented by the blue colour and K-feldspar by the pink light colour and the white
arrow. Yellow arrow points to straight edges of Na-feldspar cement. b) Scanning electron microscope—
cathodoluminescence (SEM-CL) image. White arrow points to authigenic, nonluminescent K-feld-
spar. Note the straight edges of the Na-feldspar nonluminescent overgrowth (yellow arrow).

Figure 9. Examples of Na-feldspar replacement in the Montney Formation, northeastern British Columbia. a) Scanning electron micro-
scope—energy dispersive spectrometry (SEM-EDS) image showing Na-feldspar (blue) replacing dolomite (light blue). Note two shades in
the dolomite; the darker colour (white arrow) represents a detrital core and the lighter colour represents cement. b) An SEM-EDS image of
Na-feldspar (blue) replacing detrital K-feldspar grain (pink). c) Scanning electron microscope—cathodoluminescence (SEM-CL) image of
9b. Note the bright colour of the K-feldspar (blue), indicating detrital origin.

44 Geoscience BC Summary of Activities 2016



Gedscience BC

Figure 10. Secondary electron—scanning electron microscopy (SE-SEM) images of authigenic quartz morphologies in the deep Montney
Formation, northeastern British Columbia: a) crystal overgrowth (arrows), note authigenic fibrous illite in the bottom section of the image;
b) microcrystalline quartz cements (yellow arrows) and authigenic fibrous illite growing off the edges of detrital clay (orange arrow); and

c) amorphous opaline silica.

Figure 11. Secondary electron—scanning electron microscope
(SE-SEM) image of a sample treated with HCI to remove carbon-
ate. Angular small pits are visible on exposed quartz surfaces that
were in contact with now dissolved carbonate cements. Pits are in-
terpreted to be local quartz dissolution patterns. Sample from the
Montney Formation, northeastern British Columbia.

Clay

Fibrousillite is present in the rock in varying abundance.
Fibrousillite nucleates on the edges of detrital clay and lo-
cally on weathered mica grains (Figure 10b).

Porosity Enhancing Processes
Dolomite

Dolomite dissolution isevident by partially missing grains
(Figure 2b) and ragged edges (Figure 4a). Secondary po-
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rosity is developed in detrital dolomite, particularly along
cleavage planes (Figure 4b).

Quartz

Small angular pitsare present on the surface of somequartz
grains (Figure 11). These pits are similar to previously re-
ported quartz dissolution patterns (Freidman et al., 1976;
Georgiev and Stoffers, 1980; Brantley et al., 1986; Burley
and Kantorowicz, 1986; Hurst and Bjagrkum, 1986; Bennett
and Siegel, 1987; Knaussand Wolery, 1988; Wahab, 1998)
and suggest local quartz dissolutioninthe Montney Forma-
tion caused by compaction.

Discussion

The Montney Formation in the study area is composed of
compacted, well-cemented siltstone, containing detrital
and authigenic phases, and organic matter. The QEM-
SCAN results show that clay content in the deep Montney
Formation ranges from 5 to 30 wt. %, with an average of
15 wt. %. These findings contrast with lower estimates of
clay content previously published for the Montney Forma-
tion (<8 wt. %; Davies et a., 1997; Derder, 2012; Playter,
2013). Based on qualitative SEM observations most of the
clay is of detrital origin.

The paragenesis of the Montney Formation in the deep ba-
sinwasinterpreted from adetailed study of crosscutting re-
lationships between different phases. The paragenetic se-
guence is presented in Figure 12. In accord with other
authors (Davies et al., 1997; Nassichuk, 2000; Barber,
2003; Chalmers and Bustin, 2012; Playter, 2013), the au-
thors interpret dolomite as the earliest authigenic phasein
the deep Montney Formation. Davieset al. (1997) analyzed
fluid inclusions in the dolomite and concluded that dolo-
mitewasformed below 60°C. Dolomite precipitatedinase-
ries of rims, differing in composition (Ca/Mg), width and
degree of corrosion on edges (Figure 3c). The outermost
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Phase

Pre-burial

Early burial Late burial

Mechanical compaction
Ca-phosphate

Dolomite cementation

Dolomite dissolution

Chemical compaction

Pyrite precipitation

Feldspar dissolution and precipitation
Smectite illitization

Quartz cement

Fibrous illite

Calcite cement

|

Temp.
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Figure 12. The paragenetic sequence for the Montney Formation in the deep basin, northeastern British Columbia.

Fe-rich rim of the dolomiteis similar to that recognized by
Davieset al. (1997) and Nassichuk (2000). Like Davies et
al. (1997), the authors believe that Ca-phosphate precipita-
tionisasyndepositional phase. Calcium phosphate, incor-
porated into dolomite cement, was probably remobilized
during early burial (Tribovillard et al., 2006). Following
dolomite precipitation, increasing burial led to chemical
compaction and grain dissolution. The major phases that
were dissolved are quartz, dolomite and feldspars. Since
pyrite framboids and crystals are present in al cement
phases in the Montney Formation (other than quartz,
below), pyriteformation wasinterpreted to be acontinuous
diagenetic process.

Theevolution of thefeldsparsin the deep Montney Forma-
tioniscomplicated and the temporal relationships between
feldspar cementation and Na-feldspar to K-feldspar re-
placement remains unclear. The XRD analyses on gly-
colated samples resulted in 5% expandability of the MLIS,
indicating extensive conversion of smectitetoillite. In ad-
dition to smectiteillitization, fibrousillite nucleated on de-
trital clay clumps or micas. Davies et a. (1997), Barber
(2003) and Nassichuk (2000) described similar illitization
processes as a result of K-feldspar dissolution.

The SEM imaging of freshly broken surfacesindicaterela-
tively small authigenic quartz crystals (commonly <3 pm,
occasionally up to 10 pm). Localized quartz dissolution is
interpreted to occur during chemical compaction on con-
tact surfaces between quartz and dolomite. Nassichuk
(2000) reported that quartz partly or completely replaces
dolomite, but this was not confirmed in this study. Playter
(2013) proposed that dedol omitization occurred in the deep
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Montney Formation, which was confirmed in this study
(Figure 12), though not as a widespread phenomenon.

Future Work

This paper is part of a project that investigates the diagen-
esis of the Montney Formation. Future work will provide
details on rock composition, diagenetic phases and the
paragenetic sequence for the Montney Formation along a
cross-section from the deep to shallow basin.

Conclusions

TheLower Triassic Montney Formationinthedeep basinis
composed of silt-sizedetrital and authigenicgrains. Mixed-
layer illite-smectite clay composes up to 30 wt. % of the
rock. Diagenetic processesin the deep Montney Formation
started with early burial and rock composition atered sig-
nificantly over time. Dolomitization and feldspar alteration
arethemost volumetrically significant modifications. Both
pore occluding and pore enhancing processes were ob-
served, but porosity reduction processes are by far more
substantial and significantly affect reservoir quality.
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