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Introduction

Geoscience BC’s Targeting Resources through Explor-

ation and Knowledge (TREK) project has produced a com-

prehensive collection of geoscience information for a

highly prospective area in central British Columbia (BC).

Up to this point, the surficial geochemistry component of

the project has focused on new till and lake sediment sam-

pling combined with a reanalysis and genetic interpretation

of similar archived data, resulting in one of the largest, high-

quality, and directly comparable raw exploration datasets

in North America. This value-added project provides ad-

vanced processing of the TREK geochemical data that in-

corporates a bedrock and surficial context into the evalua-

tion to better understand the complex nature of this

information and promote its potential as a mineral explora-

tion tool.

This project has two primary objectives: identify low-risk

exploration targets within the TREK project area, and de-

velop and test a method to delineate potential source re-

gions for till and lake sediment samples. Exploration targets

will be identified through a multimedia and multivariate

analysis that highlights samples with geochemical signa-

tures similar to specific common deposit types. Till and

lake sediment samples are good candidates for the multime-

dia comparison as they have been shown to correlate (Cook

et al., 1995). This correlation is likely a result of erosion and

transport of the region’s ubiquitous till cover by water-

courses. Priority will be placed on targets that show spa-

tially correlative dispersal in both till and lake sediment

geochemistry.

Potential source areas, or areas of influence (AOI), for the

two media are delineated using their unique transport

mechanisms. Lake sediment samples are transported by

watercourses, so a catchment basin analysis will be used

that is similar to those used for stream sediment samples

(e.g., Bonham-Carter and Goodfellow, 1986; Arne and

Bluemel, 2011; Heberlein, 2013). Till samples are trans-

ported by glaciers, so their AOI will be delineated using

ice-flow data, and will build on concepts related to prove-

nance envelopes (Stea and Finck, 2001; Plouffe et al.,

2011). Till AOI are designed to spatially link till samples to

a dominant bedrock source unit. Contrasting rock types

forming the bedrock geology within the TREK project area

will be reflected in the till geochemistry. The till data will be

levelled using the dominant bedrock source unit to mitigate

the influence of these contrasting rock types on the regional

dataset, which should improve anomaly identification.

Project Area

A summation and references for the known bedrock and

surficial geology for the project area are provided in Sacco

et al. (2014k). The project area is in the Interior Plateau

(Mathews, 1986), south of Vanderhoof and approximately

60 km west of Quesnel. It occupies parts of NTS map areas

093B, C, F and G and covers more than 28 1:50 000 scale

NTS map areas, and approximately 25 000 km2 (Figure 1).

Access is through a network of forest service roads in the

Vanderhoof, Quesnel, Chilcotin and Central Cariboo forest

districts.

The project area includes parts of the Nechako Plateau, Fra-

ser Plateau and Fraser Basin physiographic regions (Hol-

land, 1976). Thick surficial deposits composed dominantly

of till and glacial lake sediments obscure most bedrock ex-

posures. Higher relief features include the Nechako and

Fawnie mountain ranges of the Nechako Plateau and the

Ilgachuz and Itcha mountain ranges of the Fraser Plateau.
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Figure 1. Location map showing the study area, till (yellow symbols) and lake sediment (blue symbols) sample locations, and MINFILE
mineral occurrences (BC Geological Survey, 2016a). Digital elevation model from Canadian digital elevation data (GeoBase

®
, 2007).



Methods

This section outlines the proposed workflow and methods

for the study (Figure 2). All procedures are carried out us-

ing a combination of ArcGIS™, Reflex® ioGAS and Mi-

crosoft® Excel® computer software.

Data

This project integrates data from multiple sources listed in

Table 1. Due to the complex nature of this collection of in-

formation, inherent data discrepancies exist that may affect

the results. Significant effort has gone into the assessment,

compilation and processing of these data to ensure the best

possible results. The specific procedures used are outlined

in the appropriate method subsections below.

Bedrock Compilation and Simplification

The bedrock geology is an integral part of this study, so it is

essential to have the most accurate and consistent mapping

possible. The most continuous bedrock geology in the pro-

ject area is compiled by Cui et al. (2015); however, more re-

cent, higher resolution bedrock mapping conducted for

parts of the project area by Mihalynuk et al. (2008), Angen

et al. (2015) and Bordet (2016) is not in Cui et al. (2015). A

new, uniform and continuous geology layer is being pro-
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Table 1. Datasets and their references used in this study.

Figure 2. Flowchart illustrating the workflow for this study. Black boxes identify data sources, green boxes identify processing steps and red
boxes identify final products. Bold bracketed numbers refer to the final product list in the conclusions section of this paper. Abbreviations:
AOI, areas of interest; RIS, relative importance signature; TREK, Targeting Resources through Exploration and Knowledge; WS, weighted
sums.



duced for this study that will combine these data sources.

The data sources are first overlaid to assess the spatial com-

parability, unit designation and descriptions. From this as-

sessment, the most suitable sources will be determined. The

selected layers will then be converted to a comparable leg-

end based on the most extensive data source (i.e., Cui et al.,

2015), and spliced into the compilation. No attempts at

edge matching will be made between the units as it is a com-

plicated process that requires resources beyond the scope

of this project. The new layer will then be simplified so that

the geology is represented by major bedrock units that are

most likely to influence the till geochemistry. Simplifica-

tions will be based largely on unit descriptions and supple-

mented with available rock geochemistry where possible.

TREK Geochemical Data Standardization

Data standardization refers to a series of processing steps

required to create a genetically comparable, normally dis-

tributed and statistically equivalent dataset. Only sedi-

ments with similar genesis should be compared to eliminate

variation associated with different transport and deposition

mechanisms. Non-normal and censored data distributions

can cause issues when applying mathematical or statistical

analytical procedures (cf. Grunsky, 2010). Similarly, varia-

tion in analytical results from external factors can limit

anomaly recognition within the dataset. A combination of

filtering, data transformations and substitutions, and level-

ling techniques are applied to the raw data to improve its

utility.

The geochemical data used for this study is a compilation of

new till and lake sediment samples, and reanalyzed archive

samples. Details for the datasets can be found in the refer-

ences in Table 1 and sample locations in Figure 1. To ensure

genetic continuity within the datasets, all till and lake sedi-

ment data were assessed separately. In addition, till samples

that are not basal till are removed from the analysis based

on genetic interpretations conducted earlier in the TREK

surface sediment geochemistry program (Jackaman et al.,

2015b). Basal till is well suited to assessing mineral poten-

tial of an area because it is a first derivative of bedrock

(Shilts, 1993); therefore, it has a similar geochemical signa-

ture. It was eroded, transported and deposited under ice,

thus its transport history is relatively simple and can be de-

termined by reconstructing ice-flow histories. Further-

more, it produces a geochemical signature that is areally

more extensive than the bedrock source and potentially

easier to locate (Levson, 2001).

The data distribution of each element is assessed numeri-

cally and graphically to determine which data require the

log10 transformation to produce more normal data distribu-

tions. Most data are positively skewed and require the

transformation. Censored data distributions occur when

enough data points fall below detection limits. A sufficient

proportion of censored data artificially skews the data dis-

tribution. For elements with <1% of data points below the

detection limit, the data below the detection limit are substi-

tuted with half of the lower detection limit. For elements

with >1% of the data points below the detection limit, the

data below the detection limit are substituted with predicted

values based on linear regression coefficients of the data.

This is accomplished by fitting a line by linear regression

on a normal probability plot, and then replacing the cen-

sored data with their expected values.

The inductively induced neutron activation analysis

(INAA) was conducted at Activation Laboratories Ltd.

(Ancaster, Ontario) or Becquerel Laboratories Inc. (Miss-

issauga, Ontario) laboratories, depending on the survey. An

assessment of analytical results indicates there is minor

variation in the analytical results from each lab. There is

significant spatial overlap of the sampling regions for the

two labs, thus it is unlikely the difference is related to geol-

ogy. Instead, the variation is attributed to differences be-

tween the labs. To mitigate this variation, the data are lev-

elled using a robust z-score method. The z-score levelling

method was chosen because it does not change the shape of

the data distribution and it preserves genuine outliers. This

method converts each data point into a group-based z-

score, expressing the data in units of standard deviation

from the central tendency. The median is used as a robust

estimate of the mean and the interquartile range (IQR) mul-

tiplied by 0.7413 as a robust estimate of standard deviation.

It is defined by the equation

z
input value median

IQR
= −

× 0 7413.
.

Sample Areas of Influence

An AOI is designed to identify the potential source region

for a sediment sample. Because till and lake sediments have

different geneses, the AOI of each media is determined

based on different transport mechanisms and represents a

different source material. Basal till is eroded and trans-

ported by glacial ice and is dominantly derived from bed-

rock. The shape of each till sample AOI is dependent on

variables related to ice-flow dynamics, and the AOI delin-

eates a region of bedrock that has influenced the composi-

tion of the till sample. Lake sediment samples are trans-

ported through drainage networks; therefore, the AOI for

lake sediment samples is defined by the catchment basin of

the sampled lake.

Till Sample AOI

Till sample AOI represent the potential source region for a

specific sample point, defined by a sector of a circle that is

centred on the sample location. The angle of the sector is a

function of the range of ice-flow directions that affected the

location, and the length of the radii (arms) is a function of

estimated sediment-transport distance (Figure 3). Delinea-
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tion of a till sample AOI is an iterative process that begins

with a standard till sample AOI that has a standard length

and an arc length that is specific to the ice-flow history at

each sample location. The standard AOI is used to extract

scaling factors that reflect increased or decreased sediment

transport distances. These scaling factors are then applied to

the standard AOI to create the final till sample AOI that will

be used to determine dominant bedrock influence (Figure 3).

Delineation of a Standard Till Sample AOI

The length of a standard AOI is determined based on aver-

age anomaly dispersion distances in till from known min-

eral deposits within the region. The dispersal distance is

measured from the deposit to the location where associated

element concentrations are below the 75th percentile. Based

on the references listed in Table 2, the average dispersal

length is approximately 2.5 km.

The angle of a standard AOI is based on the range of ice-

flow directions that affected a sample location (Figure 2).

Ice-flow directions were determined from the azimuth of

small- and large-scale ice-flow indicators (see Table 1 for

references). Ice-flow histories were determined where rela-

tive chronologies could be assigned to the indicators, and

from regional ice-flow patterns. A 2 km buffer was created

for each till sample location, and the maximum and mini-

mum azimuth values from all ice-flow indicators were at-

tributed to the sample point. The range for each sample lo-

cation was assessed for the influence of spurious values and

adjusted accordingly. During this assessment, modifica-

tions were made based on known ice-flow histories and

topographic influences.
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Table 2. Geochemical dispersal distances in till to the 75
th

percentile from known
mineral occurrences in central British Columbia.

Figure 3. Conceptual diagram of till sample area of influence (AOI) delineation and utilization to extract the dominant bedrock source: a)
standard till sample AOI are delineated based on sample locations and ice-flow vectors; b) length-scaling factors are extracted from layers
that affect sediment transport distances using standard till AOI; c) the length of standard till sample AOI are multiplied by the scaling factors,
and the dominant bedrock units affecting the samples are calculated.



Length-Scaling Variables and Factors

Length-scaling factors are used to modify the length of a till

sample AOI based on the specific surface conditions to im-

prove the accuracy of the estimated transport distance of

each sample. It has been shown that transport distances in-

crease with velocity of ice flow (Clark, 1987; Bouchard and

Solonen, 1990; Aario and Peuraniemi, 1992). The ice ve-

locity cannot be directly determined; thus, the scaling fac-

tors are based on three surface characteristics (i.e., scaling

variables) that can affect ice velocity: slope, surface rugos-

ity and surficial material. Transport distances can also be

affected by the physical properties of the source (e.g., areal

extent, erodibility, topographic position) and re-entrain-

ment potential (Parent et al., 1996). The physical properties

of the exploration targets are yet to be identified, and deter-

mining re-entrainment potential is not feasible across the

study area so these factors will not be addressed here.

Glaciers generally accelerate downslope and decelerate up-

slope. Directional slope is measured using SRTM elevation

data and the generalized ice-flow directions from the ice-

flow indicator compilation. Thiessen polygons are created

for the generalized ice-flow indicators. Spurious results are

assessed and adjusted where necessary ensuring coordina-

tion with surrounding values. The polygon file is converted

to an ice-flow direction raster with an equivalent cell size to

the SRTM data. The ice-flow direction raster is smoothed

using a roaming average of 10 cells to reduce sudden direc-

tional changes along polygon borders. The SRTM dataset is

smoothed using a 25-cell roaming average to remove the

influence of minor topographic features that are either too

small to affect ice flow, or did not exist during glaciation

(e.g., meltwater channels and postglacial landforms). Slope

and aspect raster layers are calculated from the SRTM data,

and the directional slope was calculated using the formula

( )S S D AD = −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

cos
π

180
,

where SD = directional slope, S= slope raster, D = direction

of ice-flow raster and A = aspect raster.

Increased surface rugosity increases basal drag and de-

creases ice velocity. Surface rugosity is calculated using a

modified version of the terrain ruggedness index (TRI) by

Riley et al. (1999). Several other methods of measuring

rugosity were tested and were deemed unsuitable due to is-

sues with scale and the resolution of the elevation data. For

example, the true rugosity of a surface is probably best indi-

cated by the 2-D area to 3-D area ratio. This method, how-

ever, could not produce accurate results at a scale that

would affect a glacier and is better suited to higher resolu-

tion data.

The Riley et al. (1999) TRI is the difference between the

value of a cell and the mean of a neighbourhood of sur-

rounding cells. This calculation is performed on the SRTM

dataset that is smoothed using a 10-cell roaming average to

remove minor topographic irregularities from the calcula-

tion. Minimum and maximum 25 by 25–cell neighbour-

hood raster layers are derived from the smoothed DEM,

then the TRI is calculated using the formula

( )( )TRI abs= −max min2 2 ,

where max = maximum 25 by 25–cell neighbourhood ras-

ter and min = minimum 25 by 25–cell neighbourhood ras-

ter.

The surface expression and thickness of the surficial mate-

rials are used as qualitative proxies for ice-flow velocity

and transport distance, respectively. Thicker till units are

generally transported farther (e.g., Levson and Giles, 1995;

Paulen, 2001) and streamlined landforms (notably with a

length-to-width ratios of 10:1) suggest higher ice-flow ve-

locities (Stokes and Clark, 2002; Briner, 2007; King et al.,

2009). Sediment thickness and surface expressions were

extracted from surficial mapping compiled from several

sources (see Table 1). The mapping was combined using a

common legend, with higher resolution mapping favoured

where overlap occurred.

Quantifying the effects of the scaling variables on ice-flow

velocity, and ultimately on sediment transport distance, is

beyond the scope of this preliminary study. The scaling fac-

tors for this preliminary study are, therefore, relative rather

than absolute. Each scaling variable is divided into five fac-

tor categories, with each representing a scaling factor of 0.1

(Table 3). The relative scaling factors are based on the aver-

age condition. For example, the average condition is scaled

by a factor of 1; one below the average condition is scaled

by a factor of 0.9; one above the average condition is scaled
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Table 3. Length-scaling variables and factors used to adjust till sample areas of interest (AOI) based on surface characteristics that affect till
transport distances.



by a factor of 1.1. Directional slope and rugosity variables

are numerical indices. The average condition for these indi-

ces will be determined by the mean, and the scaling-factor

divisions measured in units of standard deviation (Table 3).

Surficial material characteristics are more qualitative and

require a different approach. Based on areal distribution,

thick material is the average condition and is assigned a

scaling factor of 1. The scaling factors increase as the

amount of streamlining increases, and decrease as the

material becomes thinner.

The percent coverage of the scaling factors for each scaling

variable are measured from within the standard AOI. A fi-

nal scaling factor for each variable is determined by

weighting each category based on the percent coverage.

The standard AOI length is then multiplied by each vari-

able’s weighted scaling factor and the final till sample AOI

are delineated using those lengths.

Levelling Geochemical Data Based on Bedrock

The final till sample AOI spatially link each till sample to a

probable source region. The dominant bedrock source unit

can be determined by extracting the dominant bedrock unit

within the AOI. The efficacy of the bedrock attribution will

be measured by examining the pebble lithologies of till

samples, and by comparing the geochemistry of till samples

with that of the bedrock source. Till samples collected in

2013 and 2014, in association with the TREK project, in-

cluded the collection of 50 clasts (Jackaman and Sacco,

2014; Jackaman et al., 2015a). The proportion of clasts col-

lected will be compared to the source area bedrock attribu-

tion and assessed for consistency. Similarly, the geochemi-

cal concentrations of till samples will be compared with

those of the bedrock source regions to determine if they

match. These quality-control measures are limited by the

fact that not all samples have pebble data and not all rock

units have available geochemical data that are comparable

to the till geochemical data.

If the bedrock attributions are found suitable, the till geo-

chemical data will be levelled to mitigate the variance in

geochemical concentrations related to bedrock source. The

levelling procedure will use the same methods outlined in

the data standardization section because it does not change

the shape of the data distribution and it preserves genuine

outliers.

Lake Sediment Sample AOI

Lake sediment sample AOI represent the potential area

from which lake sediment was derived, and are delineated

in the same manner as a catchment basin. For the purposes

of this study, a lake catchment is defined as the drainage

area from the outlet of the sampled lake to the outlet of the

next upstream sampled lake. Lake sediment sample AOI

are delineated by computing the catchments of sampled

lakes using Canadian digital elevation data (CDED;

GeoBase®, 2007). The CDED was chosen because it was

created using hydrographic elements, and more accurately

represents the hydrological system compared with the

SRTM elevation data.

The CDED is processed to remove linear artifacts that af-

fect the drainage system modelling. The data are resampled

to a resolution of 10 m and smoothed using the minimum

value of the surrounding eight cells. The minimum value is

used to ensure lower elevation areas representing drainage

networks are not artificially raised, resulting in discon-

nected upstream areas.

Preliminary catchments are delineated for all sampled lakes

by using the Arc Hydro tool set, and generally following the

method for modelling deranged drainage systems (Djokie,

2008). The elevation values under the sampled lakes are re-

duced to below the minimum value of the elevation dataset

to ensure the modelling does not allow for water flow

through the lake. A flow direction raster is created specify-

ing the sampled lakes as sinks. During this process, each

cell that would eventually drain into an identified sink was

defined, which delineated the possible sediment source

area for each sampled lake.

Errors can occur in the catchment delineation for lakes with

upstream, adjacent wetlands. If the upstream wetland is flat

in the elevation model, no flow direction can be computed

and the upstream area is cut off from the lake catchment. All

wetlands that are adjacent to lakes are identified and

screened for potential impact on catchment delineation.

Upstream wetlands that impact the preliminary catchment

delineation are merged into the lake, and the process is

rerun using the modified lakes.

Lake sediment sample AOI represent the potential source

region for a sample; therefore, they represent the source for

geochemical anomalies within that sample. The geochem-

istry of the lake sediment samples is attributed to the AOI to

indicate the ground coverage of the sampling, and an area to

focus exploration efforts.

In several large lakes, sediment samples were collected

from what was interpreted as different basins (Jackaman,

2006, 2008a; Jackaman and Sacco, 2014). The geochemi-

cal concentrations of lake sediment samples collected from

the same lake are compared for variation prior to attribution

to the AOI. If the variation between key mineralization

pathfinder elements (e.g., Cu, Zn) are within 25%, esti-

mated as percent relative standard deviation, the values are

averaged and applied to the AOI. If significant variation is

observed, the catchment is manually modified based on

topographic and hydrological considerations to best

represent input into the sampled basins within the lake

(Figure 4).
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Evaluation of the lake sediment geochemistry will include

consideration for AOI size. It is expected that samples with

larger AOI will have geochemical values that are closer to

background levels due to dilution. The effect of dilution

will be assessed empirically using concentration versus

AOI area scatterplots to identify samples from large catch-

ments that are above the mean concentrations. If AOI are

prohibitively large, the sample may be removed from the

dataset or evaluated separately.

Data Evaluation

Deposit Types and Relative Importance
Signatures

The deposit types used in this study will be

based on nomenclature from the BC mineral de-

posit profiles (BC Geological Survey, 2016b).

The weighted sums (WS) analysis uses ele-

ments that are diagnostic of mineral deposit

types common to the region (Table 4). Prelimi-

nary elements of interest were determined

through a review of available rock geochemistry

from those mineral deposit types and informa-

tion in MINFILE (BC Geological Survey,

2016a). Aspecific relative importance signature

(RIS) will be determined for each deposit type

through factor analysis and correlation matrices

of surface sediment and rock geochemistry.

Positive values in the RIS indicate that elevated

concentrations of pathfinder elements are sig-

nificant and negative values indicate that de-

pleted concentrations are significant. Prelimi-

nary experiments will be carried out to

determine which deposit types will be used in

the final analysis.

Weighted Sums Analysis

A weighted sums (WS) analysis creates a single index that

considers multiple elements and is specific to the geochem-

ical signature of the exploration targets. The WS analysis

uses a priori knowledge of mineralization to reduce its

multi-element signature to a single linear function (see

Garrett and Grunsky [2001] for a description of the calcula-

tion). The specific RIS will be used to calculate the WS in-

dex for each deposit type. The relative importance values

are converted to weights by dividing each importance by
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Figure 4. Example of catchment basin delineations for lake sediment samples
(burgundy lines). Catchments are manually modified based on topographic and
hydrological considerations where samples within the same lake have percent
relative standard deviations that are greater than 25% (red lines).

Table 4. British Columbia Geological Survey mineral deposit profiles (BC Geological Survey, 2016b) with examples from MINFILE (BC
Geological Survey, 2016a) in the Targeting Resources through Exploration and Knowledge (TREK) project area, and preliminary
mineralization pathfinder elements that will be used for the relative importance signatures. Preliminary experiments will be carried out to
determine deposit types used in final analysis.



the square root of the sum of the squares of all the impor-

tance values, resulting in the sum of squares of the weights

equating to 1. The WS analysis will be carried out on the

standardized geochemical datasets for the till and lake sedi-

ment, and again on the till dataset that has been levelled

using dominant bedrock source.

Anomaly Evaluation

Specific anomaly thresholds will be determined for each el-

ement of interest and WS indices by assessing data distribu-

tions on probability graphs (cf. Sinclair, 1981; Grunsky,

2010). Once the anomaly thresholds are determined, the

data will be symbolized in a GIS and assessed to identify

the locations of anomalies and spatially correlate anomalies

between the different media. Clustered anomalous samples

and spatially correlative anomalies between the two media

will be identified as high-priority exploration targets.

Discussion

The aim of this project is to identify exploration targets

through the multivariate analysis of both till and lake sedi-

ment samples. Efficacy of the study relies heavily on the

quality of the data, the accurate delineation of sample AOI

and the RIS. Geochemical data quality has been improved

through recent reanalysis and genetic interpretations. Fur-

ther improvements are made in this study through data stan-

dardization to create a genetically comparable, normally

distributed and statistically equivalent dataset.

Areas of influence are delineated for till and lake sediment

samples to assist in the evaluation of the TREK geochemi-

cal dataset. This method is based on catchment analysis that

is typically applied to stream sediment samples (e.g., Arne

and Bluemel, 2011; Heberlein, 2013). Provided here are

preliminary methods to delineate the AOI for till and lake

sediment samples, which can be built upon and improved in

future studies. Till sample AOI are meant to spatially link

each sample to a dominant bedrock source so that the influ-

ence of varying bedrock geology can be removed from the

regional geochemical dataset. In this study, the determina-

tion of till transport distances (i.e., length of till sample

AOI) is relative and based on factors that influence glacier

velocity. Future efforts to delineate till sample AOI could

also use the length of streamlined bedforms as a proxy for

ice-flow velocity. Attempts to apply more absolute scaling

values based on sediment transport studies (e.g., Clark,

1987; Parent et al., 1996) may also improve the accuracy of

the delineation. The accuracy of the bedrock mapping and

simplifications are also very important. Inaccurate map-

ping will result in the incorrect attribution of bedrock

source units and cause spurious data levelling results. Ef-

forts are made to incorporate the highest resolution, compa-

rable bedrock mapping into one layer and to create accurate

simplifications. Future work should concentrate on im-

proving the assimilation of bedrock data from different

sources and the acquisition of extensive geochemical data,

which will improve the simplification process.

Lake sediment sample AOI are delineated from the outlet of

the sampled lake to the outlet of the next upstream sampled

lake. This definition assumes that there is minimal sedi-

ment transfer through the sampled lakes; however, the

catchments of upstream lakes that were not sampled are in-

cluded in the delineation in order to not exclude potential

source areas. A comparative analysis of geochemical data

using nested and non-nested catchments may provide em-

pirical evidence to inform whether upstream catchments

should be included in the AOI delineation.

Using catchment basins as lake sediment sample AOI pre-

sumes that any sediment within the catchment is available

for erosion and transport to the lake. In reality, soil erosion

in most areas is limited by vegetation, and likely only oc-

curs in significant amounts near the stream networks. In-

corporating a buffer around active watercourses may pro-

vide a more precise delineation of the major contributing

sediment sources to the lakes. This delineation would re-

duce the size of the exploration target, and may provide a

better estimate of catchment area, which can be used to de-

termine dilution during data evaluation.

Conclusions

This paper presents the methods that will be used to identify

mineral exploration targets in the TREK project area using

multivariate and multimedia geochemical data analysis,

and a preliminary method of sediment transport modelling.

These methods are suitable for the evaluation of surficial

exploration data in most regions, particularly in other areas

of BC where there is a large collection of geochemical data.

The completed study will produce (numbers in parentheses

are referenced in Figure 2)

• a database of standardized till and lake sediment geo-

chemical data for elements of interest (1);

• polygon shapefiles of AOI for all till and lake sediment

samples (2);

• levelled till geochemistry using dominant bedrock

source (3);

• RIS of geochemistry for six common mineral deposits

in central BC (4);

• WS indices for deposit models calculated with stan-

dardized till and lake sediment geochemistry, and lev-

elled till geochemistry (5);

• potential exploration targets (6); and

• georeferenced maps (e.g., eight 1:100 000 scale maps in

PDF) to display WS indices using proportional dot sym-

bols, and gridded data if the sample spacing allows.
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