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Introduction

Analysis of earthquake ground motion from data recorded
by regional and local seismograph networksis essential in
understanding the potential seismic hazard in a region.
Ground motion prediction equations (GMPE) areroutinely
developed and modified as more data become available,
then they are used to update the available seismic hazard
maps and building codes. However, the majority of the
available GMPE lack data resolution at distances close to
the source of the earthquakes. Thislack of resolutionises-
pecially important with regard to the ground motion from
larger, shallow, fluid-injection-induced events, which has
the potential to damage the structures around the injection
point (Novakovic and Atkinson, 2015).

Earthquakes caused by fluid injection are now common in
central and eastern US (Keranen et al., 2014; Skoumal et
al., 2015) and western Canada in the provinces of Alberta
and British Columbia (Atkinson et al., 2016; Babaie
Mahani et al., 2016). Although damage from theseinduced
earthquakes has been observed after the larger magnitude
events, such asthe moment magnitude (M,y) 5.7 earthquake
in November 2011 in Prague, Oklahoma (Keranen et a.,
2013), smaller events in western Canada with magnitudes
of 4 and higher (Atkinson et al., 2015; Eaton and Babaie
Mahani, 2015; Babaie Mahani et al., in press) also require
special attention due to the shallow depth of these events.

OnAugust 17, 2015, an M,, 4.6 event occurred inthe north-
ern Montney play of British Columbia (BC), in an area
where intensive hydraulic fracturing and long-term injec-
tion of gas and wastewater have taken place for decades
(Babaie Mahani et a., in press). The regional seismo-
graphic stations operated by Natural Resources Canada
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(NRCan) in the area are too sparse to provide ground mo-
tion data at close distances. However, alocal seismograph
network owned by Progress Energy Canada Ltd. (Progress
Energy) provided auniquedataset ranging in distancefrom
510 100 km (Figure 1a). Waveforms from this event, how-
ever, were clipped at epicentral distances asfar as~40 km,
therefore, direct observation of maximum ground motion
amplitudesisnot possible. Inthispaper, ground motion am-
plitudesfromtheM,, 4.6 event at the clipped stationsare es-
timated using the unclipped waveformsfrom an aftershock
(M, 3.0), which happened approximately three hours after
the main shock.

Database

In this study, the availability of datafrom the Progress En-
ergy three-component broadband sensors (Figure 1a), situ-
ated close to the hydraulic fracturing operations, provided
an excellent opportunity to investigate the level of ground
motion at close distances caused by induced events. Fig-
ure 1b shows seismicity and injection activity during the
months of August and September 2015. Earthquakes are
well clustered around the hydraulic fracturing wells.
Babaie Mahani et al. (in press) studied seismic activity and
fluid injection in this region from October 2014 to the end
of 2015. It was found that events are better correlated in
spaceand timewith hydraulic fracturing than other types of
fluid injection in the area. Events occurred at shallow
depths(<2.5 km) on northwest-trending thrust faults, based
on results from double difference relocation and moment
tensor inversion (Babaie Mahani et al., in press).

Figure 2 shows sample raw waveforms (horizontal east-
west component) from the three largest events in August
and September 2015. For the August 17, M, 4.6 event,
waveform amplitudes were clipped at distances as far as
~40 kmfrom the epicentre whereaswaveform clipping was
observed only at the closest station for the September 2,
M,, 3.2 event (epicentral distance 7.5 km). None of the
waveforms from the M,, 3.0 event on August 17 were
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Figure 1. a) Seismic activity from 1985 to 2016 in the northern Montney play of British Co-
lumbia from Natural Resources Canada (NRCan) earthquake catalogue (Natural Re-
sources Canada, 2016). The inset shows the region in North America. Boundary of the
Montney shale gas play is shown with a black outline. The black box is the area shown in
1b. b) Seismic activity during the months of August and September 2015 from the Progress
Energy Canada Ltd. (Progress) earthquake catalogue. The location of all wastewater dis-
posal and gas injection wells that have been active in this area in the past five years are
shown (circles). Hydraulic fracturing is shown for the months of August and September
only (triangles). The star is the location of the moment magnitude (M,,) 4.6 event on August
17, 2015. Background image from Linquist et al. (2004).

clipped. Acceleration time series were obtained from the
unclipped wavef ormsby removing theinstrument response
and filtering the waveforms using a second-order Butter-
worth bandpass filter with corner frequencies of 0.5 and
12 hertz (Hz). Figure 3 shows the three-component peak
ground acceleration (PGA) versus epicentral distance for
theeventsshownin Figure 2. InFigure 3, only valuesfrom
the unclipped waveforms are shown.

10

Ground Motion Amplitude from the
M,, 4.6 Event

Ground motion at close distances providesinsightsinto the
hazard potential of moderate-sized induced earthquakes
(magnitudesof 4 and higher) to nearby structures. Analysis
of ground motion from possibly induced earthquakesinthe
magnitude range of 3.8-4.4 in the Western Canada Sedi-
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Figure 3. Three-component peak ground acceleration (PGA) versus epicentral distance for the three largest events in August and Septem-
ber 2015: a) east-west component, b) north-south component, and c) vertical component. Waveforms were recorded by the seismographic
stations operated by Progress Energy Canada Ltd. Waveforms were filtered between 0.5 and 12 hertz (Hz) using a second-order
Butterworth bandpass filter. Only values from unclipped waveforms are shown. Abbreviation: M,,, moment magnitude.

mentary Basin hasrevealed that thislevel of motion can be
potentially damaging to nearby infrastructure due to the
shallow depths of these events, although the lower stress
drop asaresult of shallow focal depthsmight limit the high
frequency content of the ground motion (Atkinson, 2015;
Atkinson et al., 2015). Although broadband waveform
clipping as a result of instrument limitation can be com-
mon, especialy at close distances (Yang and Ben-Zion,
2010), it canlead to acritical knowledgegap in characteriz-
ing the distribution of near-field ground motion when co-
located strong-motion data are not available. In this case,
innovativeeffortsshould bemadeto derive asmuch ground
motion information as possible from the available imper-
fect dataset. Here, unclipped waveforms from a smaller
aftershock (August 17, 2015, M,, 3.0) that occurred ap-
proximately three hoursafter theM,, 4.6 event were used as
a reference dataset to estimate the ground motion ampli-
tudesfor theclipped waveformsfromthelarger event. Both
events occurred in proximity of each other with similar
source and depth characteristics and were recorded by the
same stations.

Thetotal energy of aunit massat arecording station can be
related to the seismic moment, My, as

AG A?

2 M =2pn" €]
(Lay and Wallace, 1995), where Ac isthe stressdrop, [ is
the shear modulus, p isdensity and A isthe amplitude of a
wavewith period T. By rearranging equation (1), arelation-
ship can be found between the seismic moment and ampli-
tude:

A2

M, =4upr® AoT? @)
Here, itisassumed that Y, p and Ac are similar for the two
events, although, stressdrop can vary from oneevent to an-
other depending on depth and magnitude. With these as-
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sumptions, the ratio of seismic momentsfor the two events
becomes

M — A42~6 3

M0,3.O A32.o ( )
In equation (3), subscripts 4.6 and 3.0 refer to the My, 4.6
and 3.0 earthquakes, respectively. TheM,, 3.0 event gener-
ated aPGA value of ~10 cm/s” (Asy) at the closest distance
of ~5 km on the north-south component (Figure 3b). Con-
sidering the seismic moment ratio of ~300 between thetwo
events (i.e., Mg46/Mo30 = 300), the peak amplitude of
ground acceleration generated by the M, 4.6 event at this
distance (~5 km) can be estimated to be ~173 cm/s?
(~17% gravity [g]). Ground motion from the M,, 3.0 event
at a distance of ~40 km is ~0.5 cm/s? on the north-south
component, therefore, the equivalent ground motion at this
distance for the M, 4.6 event could be ~9 cm/<?.

Figure 4 shows the estimated, three-component PGA val-
uesasafunction of epicentral distancefor theM,, 4.6 event.
For distances >40 km, the estimated values can be verified
by the observed onesfromunclipped waveforms (triangles,
Figure 4). The good match between the estimated and ob-
served data points confirms the validity of equation (3).
Thefelt threshold (0.3% g), damagethreshold (6.2% g) and
moderate damage threshold (22% g) levels shown in Fig-
ure 4 are based on Worden et al. (2012). From the observed
valuesin Figure4, the M,, 4.6 event could have been felt at
distancesasfar as60 kmfromthe epicentre. Thisisconsis-
tent with the felt reports received by NRCan with some
coming from far away communities, such as Charlie Lake,
BC (located ~100 km to the southeast of the M,, 4.6 epi-
centre). Also, based on the results shown in Figure 4, the
zone of potential damage could be as far as ~10 km.

Theuncertainty of the estimated PGA valuesfor theM,, 4.6
event isan important factor that deservesfurther investiga-
tion. For the purpose of verification, the possible level of
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Figure 4. Estimated peak ground acceleration (PGA) for the a) east-west, b) north-south and c) vertical components of the August 17,
2015, moment magnitude (M,,) 4.6 event determined from the unclipped ground motion data of the smaller M,, 3.0 event using equation (3).
Values as high as ~173 cm/s? (~17% gravity) are estimated for places close to the epicentre (~5 km or less). The three thresholds (felt, dam-
age, moderate damage) are taken from Worden et al. (2012). The estimated PGA values are remarkably consistent with the observed ones
from unclipped waveforms at distances of >40 km (shown as grey triangles).

errorswhen equation (3) isused for ground motion predic-
tion is quantitatively assessed. Specifically, the M, 3.0
event isfirst used to estimate the PGA values of theM,, 3.2
event on September 2, which had only one clipped wave-
form at the closest epicentral distance of 7.5 km (Figure 2).
The estimated valuesfor distances>7.5 kmwere then com-
pared to the observed ones measured directly from the un-
clipped waveforms and the results are shown in Figure 5.
For each data point in Figure 5, the epicentral distance for
the M,, 3.0 event (which is used to obtain the estimated
PGA) differs from that of the M,, 3.2 event by <5 km, thus
the propagation and attenuation effects are negligible.
Overall, the majority of the difference between observed
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Figure 5. Plot of the ratio between the observed and es-
timated peak ground acceleration (PGA) of the three
components for the September 2, 2015, moment magni-
tude (My,) 3.2 event. Waveforms from the smaller August
17, 2015, M,, 3.0 event were used in the calculation us-
ing equation (3). Abbreviations: E, east-west compo-
nent; est., estimated; N, north-south component; obs.,
observed; Z, vertical component.
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and estimated PGA valuesis a factor of ~3. It seems that
equation (3) tendsto overestimatethe PGA by afactor of ~2
for most data points at distances >40 km. In contrast, both
underestimation and overestimation can happen at closer
distances. Although it is difficult to determine the exact
cause of this discrepancy with thislimited dataset, it could
be speculated that perhaps variations in local geological
setting and site condition could be important factors.

Finally, Figure 6 showsthe estimated and observed PGA of
the geometric mean of the horizontal components from the
M,, 4.6 event versus hypocentral distance (the source depth
isset at 2 km). The solid line corresponds to the prediction
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Figure 6. Estimated and observed peak ground acceler-
ation (PGA) values of the geometric mean of the hori-
zontal components from the M,, 4.6 event, August 17,
2015. Solid line (A15) corresponds to the prediction by
the Atkinson (2015) model. Dashed lines mark the +0.37
deviation (in logarithmic unit) from the solid line, corre-
sponding to one standard deviation (o) of the ground
motion prediction model.
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by the Atkinson (2015) model for small to moderate events
at short hypocentral distances. This model is based on the
Next Generation Attenuation (NGA)-West2 database
(Ancheta et al., 2014) at hypocentral distances <40 km,
whichissuitablefor applicationsto seismic hazard fromin-
duced earthquakes. Both the estimated and observed values
appear to bein good agreement with the prediction model
within its standard deviation (dashed lines, Figure 6).

Conclusion

Waveforms from the August 17, 2015, moment magnitude
(M,y) 4.6 event wereclipped at distancesup to ~40 kmfrom
the epicentre; an indicator of large ground motion at close
distances. Using the unclipped ground motion from a
smaller M, 3.0 aftershock, the authors estimate that the
peak ground acceleration (PGA) from the M,, 4.6 event
could have been ashigh as~173 cm/s® (~17% gravity) at an
epicentral distance of ~5 km. Although there was no re-
ported damage from this shallow induced event, ground
motion from this event could have exceeded the damage
threshold of structures if it had happened in a populated
area.
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