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Introduction

As mineral exploration matures in the technological age,

new methods for leveraging computational resources for

prospecting continue to gain popularity. One such advance

has been the widespread adoption of geographic informa-

tion systems (GIS) for geoscientific-data management and

integration, and the associated interest in spatial-data anal-

ysis. At the forefront of this effort is the emerging field of

mineral-prospectivity mapping (MPM). With origins in

Bayesian probability in the 1980s (Hart et al., 1978; Agter-

berg et al., 1990), the concept of linking numerous georef-

erenced datasets to derive a map of mineral potential has

evolved to a suite of machine-learning algorithms, ranging

from weights of evidence (WofE; Bonham-Carter et al.,

1988; Agterberg et al., 1990; Carranza 2004) to neural net-

works (NN; Singer and Kouda, 1997; Porwal et al., 2003;

Barnett and Williams, 2006) and support vector machines

(SVM; Porwal et al., 2010; Zuo and Carranza, 2011; Abedi

et al., 2012). Although many solution methods have been

presented, certain characteristics of the MPM problem

present difficulties related to uncertainty management and

computational efficiency that have yet to be fully ad-

dressed. As a test case for this problem, the algorithm is run

on the Geoscience BC QUEST (Quesnellia Exploration

Strategy) dataset that covers parts of NTS 093A, B, G, H, J,

K, N and O, and comprises, amongst other available public

data, airborne gravity, magnetics and electromagnetics,

geochemical analysis, geological mapping and a database

of known mineral occurrences in the region.

Mineral-Prospectivity Mapping

Mineral-prospectivity mapping (MPM) was first proposed

in the late 1980s by geoscientists as a statistical method for

the integration and interpretation of spatial patterns in

geoscience data (Bonham-Carter et al., 1988). The concept

was to determine the link between various geoscience

datasets (i.e., geology, geophysics and geochemistry) and

the existence or absence of economic mineralization (Fig-

ure 1).

The problem can be stated as follows: given training pairs

of geoscience data X, where the columns of X represent the

different types of field measurements and the rows repre-

sent the different sample locations, and known mineraliza-

tion occurrences y (binary indicator; mineralization or no

mineralization), find some mapping function f(X) that can

approximate the relationship between the data and the min-

eralization occurrences such that it can be used to predict

mineral potential on new data X
new. In general, the mapping

function f(~) can be anything; Agterberg’s original formu-

lation, termed Weights of Evidence (Agterberg et al.,

1990), used posterior probability as the mapping function.

Numerous other approaches have been taken since, includ-

ing fuzzy logic (Porwal et al., 2003), logistic regression

(Harris and Pan, 1999), neural networks (Singer and Kouda,

1997; Barnett and Williams, 2006) and support vector ma-

chines (SVM; Zuo and Carranza, 2011; Abedi et al., 2012).

Due to the difficulty in field testing algorithms for this ap-

plication and the relatively slow adoption of these methods

by industry, most of the work—both past and present—on

MPM has been primarily academic, although examples of

governments and major mining companies using related

methods do exist. That being said, some of the more com-

monly adopted methods include weights of evidence, fuzzy

logic and neural networks. The popularity of these methods

can be attributed to ease of use, flexibility and successful

application in other fields. The primary challenge for this

application is that geoscientific data are prone to errors, but

none of the work mentioned above addresses this issue ex-

plicitly. This paper will do so by following the SVM ap-

proach and reformulating the problem as a total least

squares optimization. In this way, the errors in the data can

be faithfully and robustly treated.

Problem Characteristics

Although many black-box software packages exist for vari-

ous machine-learning algorithms, the optimization prob-

lem presented by MPM has a number of practical character-
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istics that should be considered when implementing a

solver. Many of these issues have been addressed individu-

ally by previous authors at one time or another; to date,

however, a comprehensive solution for the MPM problem

has yet to be discussed.

Imbalanced Training Data

In most supervised machine learning environments, an un-

biased training is achieved by approximately sampling uni-

formly from each class. When this is not true, the problem is

termed ‘imbalanced’ (Chawla et al., 2004) and can lead to

poor generalization of the resulting predictor. A number of

methods exist to handle imbalanced data, including boost-

ing (Guo and Viktor, 2004; Chawla et al., 2011) and

rebalancing (Kubat and Matwin, 1997; Raskutti and

Kowalczyk, 2004; Tang et al., 2009). As might be expected,

mineral occurrences are relatively rare, resulting in an ex-

tremely imbalanced set of training labels. This problem is

further exacerbated when one restricts the problem to a spe-

cific type of mineralization (e.g., porphyry deposits), as is

often the case for prospectivity studies.

Training-Label Uncertainty

On top of the imbalanced nature of the MPM problem is the

large degree of uncertainty associated with the training la-

bels. In this regard, there are two fundamental problems:

• the crucial distinction that, in most cases, a label of ‘no

mineralization’ simply means that mineralization has

not been discovered, and not necessarily that there is

none

• within each class (mineralized and not mineralized) ex-

ists a large range in certainty

For example, in many mineral occurrence databases, ‘min-

eralization’ encompasses occurrences ranging from pro-

ducing mines all the way down to anomalies and prospects.

Also, it is easy to understand how a classification of ‘no

mineralization’ has very different implications in the mid-

dle of a highly explored mining district than it does in a re-

mote location miles from the nearest field-sample site.

Training Data Uncertainty

As with any observed data, the training data in the MPM

problem are associated with uncertainty from various

sources. Some data, such as a magnetic-total-field mea-

surement, will have numerical uncertainties associated

with detection limits and processing procedures. Others,

such as geological mapping of bedrock units, will have

qualitative uncertainties associated with expert interpreta-

tion and sampling bias. Additionally, some data can have a

spatially correlated uncertainty introduced by different ex-

ploration environments in the field (e.g., beneath thick de-

posits of overburden, it becomes prohibitively difficult to

map bedrock). Unlike many machine-learning problems,

where both the data and the labels can be trusted, it is

known in mineral-prospectivity mapping that both have as-
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Figure 1. Combining numerous geoscientific datasets to produce a map of mineral relative potential using datasets from the QUEST study
area (Barnett and Kowalczyk, 2007; Jackaman and Balfour, 2007).



sociated errors. Furthermore, the errors on the different

data types can have very large statistical differences.

Big Data

Because mineral occurrences are rare events, the regions

considered for MPM are often quite large. Combined with

the large number of data n and the ever-growing number of

predictive data sources (e.g., magnetic total field, fault lo-

cations, bedrock age), the data matrix X quickly becomes

large and dense. Algorithms for solving this problem need

to be able to handle large-scale learning of nonlinear rela-

tionships without prohibitive computational requirements.

Geoscience Datasets

Before one can contemplate how best to integrate numer-

ous geoscience datasets, an understanding of the data is re-

quired. A typical exploration program will employ data

from three primary disciplines: geology, geochemistry and

geophysics. The variety of data within each of these is

broad, comprising qualitative and quantitative measure-

ments, inferred or interpreted values, and a large range in

data resolution and uncertainty.

In an idealized exploration environment, all datasets would

be densely sampled in the same locations, giving uniform

coverage of the area of interest with an associated known

uncertainty for each survey. The reality is more commonly

represented by a scenario in which each survey was run in-

dependently, with highly varied sampling schemes, areas of

coverage and target resolutions. The uncertainty on the data

is typically a combination of numerous factors that also

vary from survey to survey—many of which are either

qualitative, inferred or simply unknown.

The integration of such surveys requires that the following

considerations be properly handled:

• Data coverage may vary by survey, resulting in over-

laps, holes or missing data.

• Nomenclature may vary amongst qualitative datasets

describing the same parameters, resulting in either re-

dundant or incompatible descriptions.

• Survey parameters may vary amongst quantitative

datasets describing the same parameters, resulting in

different sensitivities and measured values.

• Data quality and value can vary greatly, depending on

such factors as age of the survey, sampling technique

and environmental conditions.

Spatial Data

As one begins to collect various datasets for a given region,

the first issue encountered is the discrepancy between the

two data coverage plots shown in Figure 2. In most explora-

tion environments, the available data will span multiple ex-

ploration programs, each potentially having a different area

of interest. Even within a single exploration program, each

survey will likely have a different sampling scheme based

on the specific parameter being measured (e.g., bedrock ge-

ology will often be sampled wherever outcrop is available,

whereas geophysical data are typically collected at prede-

termined grid points).
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Figure 2. Idealized versus realistic data coverage for a representative suite of geoscience datasets.



To train the learning algorithm, the different measurements

must have some geographic basis and, therefore, a domain

must be specified. Traditional methods of prospectivity

mapping, such as weights of evidence, handled this by re-

ducing all field measurements—be they point measure-

ments or polygons—to a series of overlapping polygons,

each with a single value for each parameter (Agterberg et

al., 1990).

The approach used in this project is to define a sample grid

that specifies the target resolution of the prospectivity map.

Continuous point measurements (i.e., geophysical fields or

geochemical assays) can then be interpolated and resam-

pled at the grid points, and discrete or categorical polygon

layers (i.e., geological units) can simply be sampled at the

specified locations. In this way, it is possible to define a spa-

tial uncertainty for each data layer based on the distance

from the field measurements to each grid point. Under this

approach, sparse or missing data are easily handled as well,

since they will simply have very large uncertainty, thus ef-

fectively removing their impact on the training of the

algorithm.

Levelling/Reinterpreting Data

The other major challenge in integrating datasets occurs

when multiple independent surveys are measuring the same

parameters (e.g., ground magnetics and airborne magnet-

ics). In such cases, it is important that steps be taken to en-

sure that all measurements of a given parameter are repre-

sented on the same scale or dictionary. For continuous

measurements, such as geophysical fields or geochemical

assays, this is commonly referred to as levelling (Luyendyk,

1997). For discrete or categorical data, this might be more

complex and involve interpreting and reassigning labels to

avoid redundant or incompatible descriptions (e.g., [volca-

nic rocks, intrusive rocks,…, dioritic intrusive rocks] →
[volcanic rocks, intrusive rocks,…, intrusive rocks]).

Data Representation

For much of the continuous data (geophysics and geochem-

istry), representation simply consists of gridding the data

and extracting values at points of interest. For some data,

however, the question of data representation is more deli-

cate. Take, for example, the bedrock class: this is a categori-

cal variable where only one of the possible options can be

true (sedimentary, volcanic, metamorphic or intrusive). If

these data are represented as a single input with values

ranging from 1 to 4 (mapping each of the four rock classes

to a number), an inherent relationship is implied that states

that sedimentary rocks are more similar to volcanic rocks

than they are to intrusive rocks (since 1 is closer to 2 than it

is to 4). This is not the desired behaviour. Instead, an ap-

proach has been taken to convert each of the classes to a

separate binary input that states whether it is the specified

rock type or not.

Another type of data that can be difficult to properly repre-

sent is point or line data (e.g., faults or mineralization oc-

currences). Because of the grid-sampling approach taken,

data that are only defined on a point or a line can easily be

misrepresented (if the data support is between the grid

points) or simply saturated by the majority of the grid

points that have no value. For these types of data, the ap-

proach taken is to define a range of influence or some other

spatial function, such as distance to a fault or density of

faults. This is done using different point-spread functions

(e.g., Gaussians) to extend the support of these data from a

single point or line to a continuous variable that can be

sampled on the grid.

Support Vector Machines

Support vector machines (SVMs) were first formally intro-

duced in the 1990s by Vapnik, Boser and Guyon (Boser et

al., 1992; Vapnik, 2013) as a machine-learning algorithm

structured on the statistical-learning theory (VC theory) de-

veloped by Vapnik and Chervonenkis during the 1960s and

1970s (Vapnik and Chervonenkis, 1971). The basic princi-

ple of SVMs is to construct an optimal margin classifier that

has complexity based not on the dimensionality of the fea-

ture space, but rather on the number of support vectors, thus

allowing for sparse solutions in high dimensions (Figure 3).

The SVM is an optimal margin classifier because the goal is

to learn the equation for a hyperplane that separates the dif-

ferent data classes with as large a margin as possible (sub-

ject to the constraints). A classifier with complexity inde-

pendent of the data dimensionality can be a powerful

advantage when dealing with large, highly dimensional

datasets, since only a small subset is necessary in construct-

ing the SVM classifier.
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Figure 3. Optimal margin classification using the support
vector machine (SVM); the separating hyperplane (black) is
determined by maximizing the margin (yellow) between a
few sparse support vectors (outlined in green).



The SVM falls under the branch of machine learning

known as supervised learning, in which a predictor is

taught using training data and training labels (Friedman et

al., 2001). In the simplest case, one can consider training

data with binary labels. The SVM can also easily be modi-

fied to handle regression on continuous or multivalued la-

bels—binary classification is simply the most intuitive to

visualize and illustrate the algorithm. The data and labels

can therefore be represented as

[(X1, y1), (X2, y2),…, (Xn, yn)] with XiR
m, yi {–1, 1}

For mineral-prospectivity mapping, Xi would be a vector of

different field measurements (e.g., magnetic total field,

bedrock age, distance to fault) for a given sample location

and yi would signify ‘mineralization’or ‘no mineralization’

for that location. If the data are linearly separable, then one

can define a separating hyperplane:

f(X) = Xw + b

where w and b are weights with normalization | Xnw + b | = 1.

The problem then becomes one of maximizing the margin

between training points of opposing classes –1 and 1 (see

Figure 3). This is equivalent to the following optimization

problem (Burges, 1998; Friedman et al., 2001):

which can be solved using quadratic programming

(Burges, 1998; Platt, 1998; Smola and Schölkopf, 2004;

Chang and Lin, 2011) or a number of iterative gradient-

based methods (Joachims, 2006; Chapelle, 2007; Chang et

al., 2008; Shalev-Shwartz et al., 2011). To solve this in the

primal form using gradient-based methods, one typically

casts the problem as a regularized risk minimization with

unknown regularization parameter and iterates through

perturbations of the model weights w

where e is a vector of ones. This formulation is preferred

not only due to its simplicity, but also because it is scalable

with number of data n. Traditionally, however, the SVM

problem was solved via quadratic programming using the

primal-dual optimality conditions (KKT)

where Q = diag(y)XT
Xdiag(y). The primal and dual formu-

lations were equally popular, however, until the dual for-

mulation recently became more prevalent due to the natural

extension to nonlinear transformations via the kernel trick

(Figure 4; Boser et al., 1992). Since the data only appear as

inner products in the dual form, a transformation K(X,XT)

can be applied and yet the size of K remains n × n. This has

powerful implications, allowing for transformations to

very high dimensional spaces without penalty, but it is easy

to see that this becomes computationally expensive when n

is large.

This fact, combined with the realization that kernel meth-

ods can be applied in the primal form via the representer

theorem (Chapelle 2007), has led to a resurgence of primal

SVM methods in the past 10 years. With the advance of iter-

ative optimization techniques, primal SVM methods have

gained in speed and popularity to accommodate the grow-

ing size of applied datasets. Extensions of the algorithm to

many specific problems have also taken place, including

imbalanced datasets (Raskutti and Kowalczyk, 2004; Tang

et al., 2009; Pant et al., 2011), density estimation (Chen et

al., 2001; Manevitz and Yousef, 2002; Mordelet and Vert,

2010) and the incorporation of uncertainties for robust esti-

mation (Zhang, 2005; Carrizosa, 2007; Pant et al., 2011;

Huang et al., 2012).

SVM for Prospectivity Mapping

Beginning from the primal SVM formulation previously

discussed, it is straightforward to adapt the problem to han-

dle the characteristics specific to mineral-prospectivity

mapping, namely by adding uncertainties on the data and
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Figure 4. Nonlinear mapping via the kernel trick; classes may not be linearly separable in
original dataspace, but easily separable in the transformed dataspace.



labels. In the simplest case, this can be done by adding

weighting terms that penalize highly uncertain values, al-

though more sophisticated algorithms can also be devel-

oped, such as in Granek and Haber (2015). In the simplest

case (linearly separable SVM classification), training label

uncertainty can be incorporated with the addition of a

weighting term in the objective function

where åi is proportional to the uncertainty on the ith training

label. In this way, labels with low confidence are used less

to train the classifier because they do not contribute as

much to the misfit. Similarly, uncertainties in the training

data can be handled by adding an extra penalty term (in red)

to the objective function

It is now assumed that the observed data Xobs are incorrect,

and the true data are X. Treating the uncertainties (Ó) as a

proxy for the variance of the difference between these two

data, and assuming Gaussian distribution, this bares a strik-

ing resemblance to the total least squares (Golub and Loan,

1980) problem.

Results

Finally, to demonstrate the utility of such an algorithm for

mineral-prospectivity mapping (MPM), the following ex-

ample from the QUEST (Quesnellia Exploration Strategy)

project in central British Columbia is presented. This work

was funded by NEXT Exploration Inc. and Mitacs, so the

results are currently confidential. For demonstration pur-

poses, permission has been given to show preliminary re-

sults from a subset of the QUEST area (Figures 5, 6). This

region is known to host a number of large, economic, cop-

per-porphyry deposits. Through a government-sponsored

program, a large amount of geoscientific data (including

geological mapping, geochemical analysis and geophysi-

cal-data acquisition) was acquired between 2008 and 2012

in order to stimulate mineral exploration. Included in the

large multidimensional dataset are covariates such as total-

magnetic-field intensity, age of bedrock, geological rock

class and copper content. Since each dataset was collected

independently with its own sampling scheme, all layers

were resampled to a base grid of 300 × 300 m, resulting in
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Figure 5. Examples of input layers for a subset of data from the
QUEST project area: a) known mineralization locations, and b) un-
certainty estimates for the mineralization labels (red is more uncer-
tain). NEXT Exploration Inc. is thanked for permission to publish
these preliminary results.

Figure 6. Prediction for prospective mineral regions in a portion of
the QUEST area (red is more prospective, blue is less). NEXT Ex-
ploration Inc. is thanked for permission to publish these prelimi-
nary results; final prospectivity maps and locations are confidential
under the terms of the funding agreement with NEXT Exploration
Inc.



more than 700 000 sample points. When all data were as-

sembled and properly processed for training, 91 distinct

input layers were used, including both continuous and

discrete values.

Uncertainty on these inputs can vary widely, depending on

the data source. For example, most geophysical data can

bear uncertainty in the form of a noise floor plus an accept-

able standard deviation, whereas it is less obvious for geo-

logical data due to the subjective, interpreted nature of the

measurements. In these cases, estimates can still be made

based on confidence in the expert and the availability of

field measurements.

As previously mentioned, the labels for the MPM problem

present a suite of practical issues. The lack of confident

negative labels (no mineralization) results in an imbalanced

learning problem, and the sparse subjective nature of the

positive labels (mineralization) results in a large range in

confidence that can be adequately quantified using a frame-

work of uncertainty estimates. For the QUEST dataset,

155 alkalic copper-porphyry–style mineral occurrences

were used to generate a set of binary labels on the base grid.

Each occurrence has associated with it a status ranging

from ‘Showing’ to ‘Producer’ (six unique statuses are pos-

sible), indicating the confidence in the mineral occurrence

being economic. Combining this with other factors such as

the extent of the overburden (concealing potentially min-

eral-bearing bedrock), uncertainty estimates for the labels

(see Figure 5b) were generated, ranging from 1 (confident

label) to 50 (not confident label). The final result is a pre-

dicted mineral-prospectivity map (Figure 6) that indicates

which regions are more favourable for copper-porphyry

mineralization than others. As one can see, the algorithm

was able to successfully predict the known prospective re-

gions, as well as highlight potential new areas for explora-

tion. The addition of uncertainty estimates in the algorithm

provides a more robust framework for the incorporation of

multidisciplinary data that possess a large range in data

quality.

Discussion and Future Work

In the mineral-prospectivity–mapping literature, much has

been made of the difference between knowledge-driven

and data-driven methods. Although SVM automates the

learning process and is therefore considered a data-driven

approach, it is important to acknowledge that, without

properly informed data processing prior to learning, the en-

tire methodology is doomed to poor performance. This is

not a short-coming of SVM but rather a well-known idiom

of machine learning in general: “garbage in, garbage out!”

In this sense, it is advisable to employ a data-driven ap-

proach, such as SVM, but with deliberate consultation of

field experts when processing the data prior to learning.

A major shortcoming of many prospectivity-mapping

methods, including SVM, is the insensitivity to spatial pat-

terns in the data. One can think of the example of a typical

porphyry halo, in which the presence of a large ring in the

geophysical data is indicative of a target in the centre. In

such a case, the actual value at each point location is not

nearly as important as the structure it represents.

One promising new algorithm designed to handle the chal-

lenge is the convolutional neural network (CNN; LeCun

and Bengio, 1995). An extension of the well-known neural

network family of learning algorithms, CNNs implicitly

build in sensitivity to spatial structures via use of convol-

utional kernels that are optimized to detect key structures in

the input data. Developed and popularized in the last de-

cade primarily for image, text and speech recognition,

CNNs present an exciting new algorithm ideally suited for

recognizing complex patterns in spatial geoscience data-

sets.

Conclusions

This work has explored the rapidly developing field of min-

eral-prospectivity mapping from an algorithmic and data-

processing point of view. Although much work has been

done in the fields of machine learning, geoscience and GIS

independently, the intersection of all three has left a suite of

challenges that remain to be fully addressed. Using a subset

of the data from Geoscience BC’s QUEST project, this

study addresses several challenges through the modifica-

tion and application of a primal support-vector-machine al-

gorithm, incorporating uncertainties in both the labels and

the data. In conjunction with this work, much effort has

been directed at the proper understanding and use of data

processing prior to learning. Going forward, the authors are

exploring different algorithms that are better able to handle

the spatial and structured nature of many geoscience

datasets; most notably, current research is working on de-

veloping a convolutional neural network for mineral-

prospectivity mapping. Such algorithms show promise as

tools for geoscientists, both in the early stages of explora-

tion by allowing for critical appraisal of which datasets are

most valuable, and in the later stages to extract maximum

value from existing data-rich environments.
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