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Introduction

The rapid spread and destructive effects of the mountain
pine beetle (MPB) in areas of British Columbia have
prompted the need to devel op economic diversification op-
portunities for the interior of the province. As a result,
Geoscience BC has initiated a number of projects with the
aim of assessing the mineral and petroleum potential of the
affected region. Limited exploration to date has indicated
some potential for oil and gasreservoirswithin theinterior
basins of central BC, including the Nechako sedimentary
basin (Hannigan et al., 1994; Hamblin, 2008). In order to
gain abetter understanding of the potential for hydrocarbon
resources in the region, amagnetotelluric survey, designed
to evaluate the usefulness of the method in oil and gas ex-
ploration and to characterize the conductivity structure of
the Nechako Basin, was conducted in the fall of 2007
(Spratt et al., 2008; Spratt and Craven, 2008; Figure 1).

The Nechako Basin is an Upper Cretaceous to Oligocene
sedimentary basin located in the Intermontane Belt of the
Canadian Cordillera (Figure 1). The basin formed in re-
sponse to terrane amalgamation to the western edge of an-
cestral North America, and consists of overlapping sedi-
mentary sequences (Monger et al., 1972; Monger and
Price, 1979; Monger et a., 1982; Gabrielse and Yorath,
1991). Underlying the Nechako sedimentary rocks are the
Stikine and Quesnel volcanic arc terranes, separated by the
oceanic Cache Creek Terrane (Struik and Maclntyre,
2001). Transpressional tectonic processes were dominant
until the Eocene, with westward-directed thrusting be-
tween the Stikine and Cache Creek terranesprior to 165 Ma
(Best, 2004). Regional transcurrent faulting and associated
east-west extension, beginning in the Late Cretaceous,
were accompanied by the extrusion of basaltic lavain
Eocene and Miocene times.
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Basaltic flows of the Neogene Chilcotin Group, volcanic
rocks of the Eocene Endako and Ootsa Lake groups, and
Pleistocene glacial deposits cover a large portion of the
Nechako Basin, complicating the interpretation of modern
subsurface imaging methods. Asaresult, much of the stra-
tigraphy and structure of the underlying sedimentary rocks
remains uncertain. It has been suggested that the Chilcotin
Group can reach a thickness of ~200 m and averages
~100 m (e.g., Mathews, 1989); however, new studies sug-
gest that it is comparatively thin (<50 m) across most of its
distribution and only thick (>100 m) in paleochannels (An-
drews and Russell, 2008). The presence of the surface ba-
saltic flows and Tertiary volcanic rocks covering most of
the region has, to date, prevented uniform and consistent
seismic-energy penetration and has complicated the mag-
netic interpretations. It has been shown that the
magnetotelluric (MT) method can be useful in resolving
geological structuresthat are lessfavourablefor character-
ization by seismic methods (Unsworth, 2005; Spratt et al.,
2007). Asthe method is sensitive to but not impeded by the
surface volcanic rocks and can detect variations within the
different units, it can be useful inlocating the boundaries of
the Nechako Basin and defining its internal structure.

M ethodology

The magnetotelluric (MT) method measures the natural
time-varying electrical and magneticfieldsat the surface of
the Earth to provide information on the electrical conduc-
tivity of its subsurface (Cagniard, 1953; Wait, 1962; Jones,
1992). Signal for MT is generated from interactions be-
tween solar winds and the ionosphere at low frequencies,
and from distant lightning storms at higher frequencies.
The MT response curves (phase lags and apparent
resistivities) are cal culated from the measured fields at var-
ious frequencies for each site recorded. Aslower frequen-
cies penetrate deeper through resistive materials, an esti-
mate of conductivity variation with depth can be madefrom
the response curves beneath each site.

Where the Earth is electrically two-dimensional (2-D), the
conductivity varieslaterally along aprofile and with depth.
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Figure 1. Regional geology of the study area (Riddell, 2006), showing the location of the magnetotelluric stations and the bore-

hole wells.
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In this case, apparent resistivities and phases differ along
strike compared to thosein the perpendicular direction, and
some form of directionality analysis is required to deter-
mine the preferred geoelectric strike direction. The trans-
verse-electric (TE) mode refers to the along-strike direc-
tion and the transverse-magnetic (TM) mode is
perpendicular to strike.

TheMT method issensitiveto contrastsin theresistivity of
juxtaposed material sand can therefore di stinguish between
some lithological units. Basalt and igneous rocks, for ex-
ample, commonly have electrical resistivity values
>1000 ohm-m (U-m), whereas sedimentary rocks are less
resistive, with values ranging between 1 and 1000 U-m. In
thecrust, other factorsthat can greatly influencethe overall
conductivity of aspecificunitincludethe presenceof saline
fluids, changes in porosity and the presence of graphite
films or interconnected metallic ores (Haak and Hutton,
1986; Jones, 1992). In addition to defining structure, the
MT method may be able to provide some estimate of bulk
properties, such as porosity and percent salinity, that may
give direct evidence for the presence of hydrocarbons
(Unsworth, 2005).

Data and Analysis

Combined high-frequency audio-magnetotelluric (AMT)
and broadband (BBMT) data were collected at a total of
734 sitesthrough the southern part of the Nechako Basinin
the fall of 2007 (Figure 1). The data were acquired by
Geosystem Canada using MTU-5A recording instruments
manufactured by Phoenix GeophysicsLtd. of Toronto. The
datawere processed by Geosystem using robust remoteref-
erence techniques resulting, in general, in excellent data
quality covering a period range of nearly seven decades
(0.0001-1000 seconds). The dataset was divided into eight
separate profiles for subsequent data analysis and 2-D
modelling (Figure 1).

Single-site and multisite Groom-Bailey decompositions
were applied to each of the MT sitesalong profilesA, B, C,
D and F, in order to determine the most accurate geoel ectric
strikedirection and to analyze the datafor distortion effects
(Groom and Bailey, 1989; McNeice and Jones, 2001). Fig-
ure 2 illustrates the results of single-site strike analysisfor
each decade period band recorded at each site along the
profiles. Nearly all of the sites show a maximum phase dif-
ference between the two modes of less than 10° at periods
below 0.1 second (s), indicating that the data are independ-
ent of the geoel ectric strike angle and can be considered 1-
D. The maximum phase splits are observed between
0.1and 10's, where small changesin the selected strike an-
gle will most affect the data and associated errors.

Profiles A and C are similar, with strikes of 5-10° at the
westernmost edge of the profiles changing to a strike of
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~35° towardstheeast. Profile B showsonly moderate phase
splitsat only afew sites, suggesting that the majority of the
dataare 1-D. Profile D shows much stronger phase splits,
with apreferred strike angle of ~32° for most sites to peri-
odsof 100's; however, themisfit valuesfor the decomposed
data, even when no constraints were placed on the data,
were significantly high. Thisis a strong indication of 3-D
distortion effects, so 2-D models may not accurately repre-
sent the data. Results along profile F indicate strong phase
differences at periods greater than 1 swith afairly consis-
tent strike angle of 22-28°. In general, there is a roughly
northeast to southwest trend observed in the variations in
the geoelectric strike angle. These changes may have re-
sulted from different tectonic pulses, where the stress
directions are preserved in the conductivity structure.

Data Modelling and Preliminary Results

One-Dimensional Models

One-dimensional modelshave been generated for all of the
MT siteswithin the Nechako Basin. Layered Earth models
were derived from Occam inversions using the
WingLink™ interpretation software package.
Dimensionality and depth analysisindicatethat, in general,
the data can be considered 1-D up to periods between
0.1 and 1 s, corresponding to depths below 1000-2500 m.
Figure 3 shows the results of the 1-D models for varying
depthslicesinthe M T survey region. In general, among the
northern set of sites, there appears to be a northeast to
southwest trend in conductivity structure, consistent with
the results from the decomposition analysis. However,
more complex structure is revealed in the southern set of
sites, and additional dimensionality analysis is necessary.
At 50 m depth, the blue region at the westernmost extent of
the survey areamost likely representstheresistive vol canic
cover. Consistent with the results from Andrews and Rus-
sell (2008), the limited lateral extent of this resistor sug-
gests that the volcanic cover is either thinner than 50 m or
not as widespread asinitially presumed. There isachange
in conductivity from ~200 to >700 U-m in the eastern half
of thesurvey areabetween depthsof 1000 and 2000 m. This
likely represents the change from conductive sedimentary
rocks to the underlying resistive basement units; however,
this change is not observed through the entire region, indi-
cating that the sedimentary packages are thicker towards
the eastern edge of the Nechako Basin. An anomalously
conductive zone (<15 U-m) is observed in the centre of the
MT survey region at a depth of 500 m, along profile D,
within the sedimentary unitsand appearsto dip towardsthe
east. These dramatic changes may be related to salinity of
groundwater or changes in porosity.

Two-Dimensiona Modelling

Two-dimensional models have been generated along pro-
files A, B, C, D and F using the WingLink interpretation
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Figure 2. Preferred geoelectric strike angle at each decade period band recorded for each of the MT sites
within in the Nechako Basin. The colours illustrate the maximum phase difference between the TM and TE
modes, where the warmer colours represent a higher phase split.
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Figure 3. Results of one-dimensional modelling of all MT sites within the Nechako Basin
at various depths within the Earth. The warm colours represent areas of high conductivity
and the cooler colours represent resistive regions.
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software package (Figure4). Morethan 100 iterationswere
executed and included data from the TE mode, the TM
mode and the vertical field transfer function, in the period
between 0.0001 and 1000 s. All of the modelsreveal ade-
crease in conductivity at depths ranging from 1000 to
3000 m, corresponding to approximate depth estimates for
the thickness of the Nechako sedimentary packages. This
indicates that the MT data are sensitive to the base of the
Nechako Basinand can delineateitsstructural boundaries.

In addition, along-profile variations in the conductivity
structure are revealed. Feature A (Figure 4b, d) is an an-
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omal ously conductiveregion (>10 U-m) that lieswithin the
sedimentary units. Thisfeatureis observed at the northern
end of profile B and along thewest-central part of profileD,
consistent with the northeast to southwest trend observedin
thestrikeanalysis. Causesfor significantly high conductiv-
ity may include the presence of saline fluids, graphite
sheets or sulphides, or may result from a significant in-
crease in the relative porosity of the sedimentary rocks.
Feature B is an anomalously resistive unit located at shal-
low depths along profile C (Figure 4c). Thisfeature corre-
lates spatially with the mapped exposure of the volcanic-
arc assemblages of the Hazelton Group of the Stikine
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Figure 4. Cross-sections illustrating the two-dimensional models generated along profiles A, B, C and D. The local geology is shown above
each profile and the different units are described in the legend for Figure 1. The red squares mark the sections where detailed focused inver-
sions have been generated and shown in Figure 5. The black lines illustrate structural boundaries in the lateral continuity of the shallow con-
ductive layer.
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Terrane. Additional modelling is required to con- Surface basalts

strain the structural nature of this feature. The ELT LRt VLI PE TR L
easternmost extent of profile D illustrates major 0 g
structure at mid-crustal depths, labelled as fea-
ture C. These structures may be related to the lat-
eral fault-bounded eastern extent of the Nechako 200
Basin, and may be an indication for north-north-
west-striking subvertical splays of the Fraser
fault. Several breaksin the continuity of theupper 400
conductor are observed along many of the profiles
(Figure4a, ¢, d). Thesemay represent faulting that
juxtaposes resistive material from deeper regions
against the conductive sedimentary rocks. —=— (@)
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Preliminary 2-D modelling has been initiated

along profile F (not shown). Although additional 1000
testing is required to assess the validity of the
model, thereisageneral deepening of theresistive 0
lower layer from northeast to southwest. Thisis 2000
consistent with interpretation of the seismic data,
which suggests a thickening of the Cretaceous AU

sedimentary rocks towards the southwest
(Hayward and Calvert, 2008).

ProfilesA, B, and D were divided into shorter seg-
ments, and each segment was modelled separately
to obtain higher resol ution of the shallow structure Pl i1
beneath the profile and to generate a model that ik
reasonably fitsall thedata. Thisisachieved by al-
lowing a denser mesh and by reducing weighted
averaging between sites by fitting the model to a
smaller dataset. These focused inversions enable
the resol ution of enhanced detail, such asimaging
the surficial volcanic rockswherethey arethicker
than ~50 m (Figure 5a), and reveal specific struc-
ture that imposes constraints on the lateral conti-
nuity of the conductive sedimentary rocks (Fig-
ure5b, d). Inaddition, they allow for acomparison ) .
between the models and geological observations Evidengce of faulting
in the boreholes (Figure 5b). They aso result in O N B {
models that have a better fit to the data, reducing e

inaccurate modelling effects (Figure 5c).
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Conclusions and Future Work

Continued analysis of magnetotelluric data col-
lected throughout the Nechako Basin has, to date,
yielded one-dimensional models for the entire
dataset and two-dimensional conductivity models
along four of the seven major profiles. A conduc-
tivity contrast between the surface vol canic rocks, (@)
the Nechako sedimentary rocks and the underly- Figure 5. Examples of the detail obtained with focused two-dimensional inver-
ing basement rocksisobserved, indicatingthat the  sions along sections of the main profiles. The red line marks the boundary be-

method is capable of imagi ng the structure of the  tween the conductive upper unit and a more resistive underlying layer, which
basin. Thet di ional delsi th isinterpreted as the base of the Nechako sedimentary rocks. The black line in-
asin. Ihetwo-aimensional MOdeISIMagetnesur-  yicates the base of the surface basalts. Wells d-96-Aand a-4-L (from Ferriand

face volcanic rocksin isolated locations, suggest-  Riddell, 2006) are shown in (b).
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ing that they are either too thin to be detected using audio-
magnetotelluric methods or they are not as widespread as
initially thought. The thickness of the sedimentary pack-
ages varies greatly along the different profiles, and struc-
tural constraints are placed on the lateral continuity of the
conductive sedimentary rocks. Along-strike variations in
conductivity within the sedimentary packages are ob-
served, suggesting changes in mineralogy, porosity or sa-
linity. Characterizing these changes will be important in
assessing the potential for oil and gas within the region.
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