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I ntroduction

Deepwater submarine channel s constituteimportant poten-
tial hydrocarbon reservoirsin offshore petroleum explora-
tion. The spatial distribution and thickness of those sand-
stone bodies are highly unpredictable because they tend to
be localized and interbedded with mass-transport com-
plexes. Looking at well-preserved analoguesin therock re-
cord assists in understanding the behaviour of sedimenta
tion processes in such environments. Sedimentary rocks
mapped as Lower to Middle Jurassic Hazelton Group and
exposed at Mount Dilworth, north of Stewart in British Co-
lumbia represent an excellent analogue of slope processes
in deep-marine siliciclastic-dominated depositional sys-
tems(Figures 1, 2). Furthermore, thereservoir unitsassoci-
ated with this stratigraphic interval are potentially charged
with hydrocarbons in laterally equivalent units farther
northeast in the Bowser Basin, where thermal maturation
levelsarefavourable (Evenchick et a., 2002; Stasiuk et al.,
2005). Therelationships between the different sedimentary
faciesidentified in atectonically active slope environment
described in this report assist in understanding the
distribution of reservoir units and assessing the petroleum
potential of this stratigraphic interval.

Geological Setting

Early to Middle Jurassic sedimentary rocks assigned to the
upper Hazelton Group are widespread in northwestern BC.
They mainly outcrop along the edge of the Bowser Basin
and constitute the lowermost stratigraphic unit of the Bow-
ser succession (Waldron et a., 2006). Siliciclastic sedimen-
tary rocks of the upper Hazelton Group were deposited
above the volcanic arc rocks of the Stikine Terrane during
an episode of back-arc extension followed by thermal sub-
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sidence (Thorkelson et al., 1995). In the study areanorth of
Stewart, upper Hazelton Group sedimentary rocks were
previously assigned to the Salmon River Formation by
Grove (1986). Regionally, sedimentary rocks of the
Salmon River Formation were deposited above the dacitic
tuff breccia of the Mount Dilworth Formation (Anderson
and Thorkelson, 1990). However, geol ogi cal mapping con-
ducted by the authorsin the summer of 2008 suggests that
these sedimentary rocks might be correlative with the
Todagin assemblage of the Bowser Lake Group (Evenchick
et a., 2006). Uranium-lead zircon work is currently being
conducted at the University of Albertaand should provide
new constraints on the minimum depositional age and
provenance of these units. The current report uses the
previous stratigraphic framework established by Grove
(1986).

Description of Depositional Units
Fine-Grained Turbidity Flows

Normally graded siltstone-mudstone and sandstone-
mudstone coupl ets are widely exposed in the sedimentary
succession (Figure 3). They usually occur in thin to me-
dium beds and form laterally extensive sheet-like units.
The presence of partial Bouma (1962) sequences T, is at-
tributed to waning energy in turbidity flows. Abundant T
and T, Sequences contain asymmetric current ripples and
groove casts, which suggests that the predominant
paleocurrent flowed towards the southwest. Loading fea-
tures such as ball-and-pillow structures and flame struc-
tures are also common. These sedimentary structures are
indicative of relatively high sedimentation rates, which led
to density contrastsin water-saturated sediments shortly af -
ter deposition. In some cases, rapid deposition also pro-
duced pore pressure that exceeded the hydrostatic equilib-
rium and led to partial liquefaction of the sediments; this
phenomenon is represented in the turbidite facies by
abundant convolute laminations.
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Figure 1. Simplified geology of the study area: a) location of the sedimentary succession presented in Figure 2 (projection in UTM NAD 83);
b) location of the Bowser Basin in relation to principal tectonic belts of the Canadian Cordillera; white square delineates the extent of the ge-
ology described in (a). Modified from Grove (1986), Evenchick and Thorkelson (2005).

Some metre-thick intervals of thinly bedded fine-grained
turbidites show evidence of biogenic reworking. The
ichnological suite observed isdominated by two distinctive
ichnogenera: Phycosiphon and Helminthopsis. These
tracesare horizontal to gently inclined, irregular, meander-
ing burrows filled by organic-rich mud (Figure 4). Both
these traces are generally interpreted as grazing trails of
vermiform organisms (Pemberton et al., 2001) and typi-
cally occur near the sediment-water interface; this suggests
that food resources were introduced mostly by suspension
inalow-energy depositional environment, outsidetheprin-
cipal sediment pathway. In terms of petroleum
prospectivity, this unit has rather low reservoir potential
duetoitsfine-grained nature. Ontheother hand, asitissitu-
ated above athick sandstone package, it would constitute
an excellent seal rock due to its impressive lateral extent
and low permeability.

Submarine Channel Fills

The percentage of sandstonein turbidite depositsgradually
increases upsection. The beds can consist of up to 90% of
sand-dominated T 4, Sequences, whereasthelayersof lami-
nated silt and hemipelagic mud Tge are centimetre-thick.
Thisoverall increase of sandstoneis associated with agen-
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eral thickening- and coarsening-upward trend at the out-
crop scale(Figure 2). Thevertical patternisinterpreted asa
change from an off-axis area characterized by bioturbated
silt and very fine sand to an axial zone of sandstone deposi-
tion. Around 85 m above the base of the section, turbidites
are truncated by a series of very thick sandstone bodies
(Figure 2). The beds typically consist of coarse- to very
coarse grained sandstonewith occasional pebbly sandstone
lenses and in situ calcareous concretions (Figure 5). They
range in thickness from 10 to 50 m and extend laterally up
to 500 m. Thin-section observations indicate that the
framework grains are mainly composed of chert,
monocrystalline quartz, plagioclase and mud clasts. The
grainsarewell to moderately sorted, withlessthan 5% clay
matrix.

In some cases, distinct sandstone beds become amalgam-
ated along strike and form channellized lobe geometries.
Figure 6 showsthe spatial distribution of achannel system
cutting down into a debris flow unit. The base of the chan-
nel ismarked by a scoured surface above which a drape of
thinly laminated mud and silt accumulated. The absence of
coarse material immediately above the scoured surface
suggests that important sediment bypass occurred prior to
accumulation of the fine-grained sediments. The mud-
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Figure 2. Annotated aerial photograph of the sedimentary succession, showing the main depositional units. Stratigraphic top is to the east.
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Figure 3. Thinly bedded succession of fine-grained turbidites with
abundant partial Bouma sequences T,.. Stratigraphic top to the
right. Hammer for scale is 30 cm in length.

Figure 4. Helminthopsis trace fossil in fine-grained turbidites.
These traces are interpreted as grazing trails of worm-like organ-
isms in a low-energy depositional environment. Lens cap is 6.5 cm
in diameter.

Figure 5. Thickly bedded, very coarse sandstone of amalgamated
channel complexes. Note the fining- and thinning- upward charac-
ter of the beds. Stratigraphic top is to the left.
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filled channel istruncated by anirregular erosional surface
above which a unit of normally graded, clast-supported
conglomerate was deposited. Upsection, the conglomerate
gradually passesinto moderately sorted medium- to coarse-
grained sandstone containing abundant current-generated
sedimentary structures. In each measured stratigraphic sec-
tion, thechannel sand isinterbedded with laminated silt and
very fine grained sand. Theserelatively thin, finer grained
intervals are interpreted to be levée deposits associated
with lateral migration of the channel axis.

The sand-rich submarinechannel spossessvery good reser-
voir characteristics: they consist of homogeneous sand-
stone arranged in laterally extensive (~500 m) and very
thick (~10to 50 m) units(Figure 2). The coarse-grained na-
ture of the sediments, combined with the relatively good
sorting, isfavourablefor development of highiinitial inter-
granular porosity. Under the proper thermal maturation lev-
els, these sand-rich channels could be charged with hydro-
carbons and would constitute significant resources.

Mass-Transport Complexes

Debris flows and slump units are the most abundant units
within the succession. These gravitational features, orga-
nized in mass-transport complexes (MTCs), consist of
large dismembered calcareous concretionary blocks and
layered rafts of sandstone and siltstone supported in avery
poorly sorted fine-grained matrix (Figure 7). Soft-sediment
deformation features, such as syndepositional folds and
extensional faults, are ubiquitous in those units. Detailed
mapping of adebris flow unit provided better understand-
ing of the deformation mechanisms prevalent during slope
failure. Sliding of a cohesive mass of sediments was initi-
ated over adetachment surface underneath which theparal -
lel beds remained undisturbed (Figure 8). Immediately
above the décollement, fine-grained layers were gently
folded during compression but retained their original thick-
ness, whereas the softer sand-rich units were subject to
more thorough ductile deformation. Pull-apart boudins of
mud in a sandy matrix also indicate rheology contrasts be-
tween units of different grain size (Figure 9), the finer
grained units behaving more competently. The slump unit
becomes progressively more deformed near its top where
disharmonic folding predominates. Eventually, most of the
primary featuresarelost and theinitial layering of the sedi-
ments becomes indistinguishable. As the matrix
incorporated more fluids during transport, the sslump unit
evolved into an incoherent debris flow.

The uppermost stratigraphic unit exposed above the sub-
marine channels consists of avery thick MTC (Figure 2).
Conservative estimates made from aerial photograph inter-
pretations suggest a minimal thickness of 400 m and a lat-
eral extent over 1.4 km. The basal contact of the MTC on
sandstoneis variable along strike. At the northern end, the
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contact is erosional on granular sandstone; further south,
the sandstone is cut by another debris flow, which shows
that the M TC isacomposite of several slumps. Internal de-
formation increases southward, where large blocks of the
underlying sandstone become incorporated in the MTC.
These rafts are organized in variable orientations and can
reach up to 100 m in length. Even though no other
mappable contacts were observed upsection, mostly dueto
extensive snow cover, theimpressivethicknessof theMTC
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probably results from multiple amalgamated debris flows
with similar facies. In terms of petroleum prospectivity,
MTCs do not represent good reservoirs due to their
dominant fine-grained composition.

Implication for Petroleum Exploration

The basal sedimentary rocks of the succession exposed on
the western side of the fault (Figure 2) consist of debris
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Figure 6. Stratigraphic cross-section of a mud-filled channel complex, showing the lateral variability of

depositional units. No vertical exaggeration.
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flowsand slumps. Their fine-grained matrix and complexly
folded laminated blocks suggest that they originally accu-
mulated as fine-grained turbidites before being remob-
ilized and deposited as cohesive gravity flows. Deposition
probably took placein aslope environment, where gravita-
tional collapses were more likely to occur. In contrast,
younger sedimentary rocks located on the eastern side of
thefault consist of unconfined thinly bedded turbiditesand
laterally extensive sandstone beds. Lobe geometry within
those units suggests that repeated low- and high-density
turbidity currents provided the bulk of the sedimentsto the
submarine fan systems. The lack of MTCs in this interval
suggests a return to more stable conditions. Upsection,
scoured surfaces and mud-clast conglomerate found at the
bases of the channel complexes are indicative of sediment
bypassand incision (Figure 10). The sandstone beds are or-
ganized in channel-lobe geometries and show local inci-
sionintofiner grained sedimentary rocks. These sand-filled
channel complexesrepresent the best reservoirs of the suc-
cession. In addition to being relatively homogeneous and
very thick, they are capped by intervening fine-grained de-
posits representing levée and overbank sediments, which

Figure 7. Folded calcareous concretionary block in a chaotic de-
bris flow unit. Brunton compass for scale is 8 cm in width.

constitute an adequate seal to prevent vertical fluid flow.
These channellized flows are in gradational contact above
the underlying unconfined frontal splays and lobes, and
probably constitute a progradation of the slope over the
basin floor.

Theproportion of MTCsgradually increases near thetop of
the succession. Incoherent debris flows are interbedded
with amalgamated sandstone beds, whereas fine-grained
turbiditic intervals are generally absent. Even though the
sandstone beds are laterally extensive along strike, reser-
voirstend to be compartmentalized due to the abundant re-
working by debris flows. This could inhibit permeability
within thereservoir and represent an additional risk for pe-
troleum exploration. Confined mud-filled channels depos-
ited aboveirregular scoured surfaces indicate that incision
and sediment bypass were still dominant processes in the
slope environment.

Figure 9. Synsedimentary deformation features formed by flatten-
ing during deposition of the slump. The more competent mud lay-
ers pulled apart into boudins, whereas the surrounding sandy lay-
ers flowed to fill the remaining available space. Scale card is 8 cm
long.

Figure 8. Deformed slump unit located above a detachment sur-
face. During slope failure, the underlying thinly bedded turbidites
remained undisturbed, while the mass-transport complex was sub-
ject to compressional and extensional deformation. The letter Ain-
dicates the location of Figure 9. Hammer for scale is 30 cm long.
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Figure 10. Poorly sorted mud-clast conglomerate located above a
scouring surface. These intervals are common at the bases of
channel fills and are indicative of sediment bypass and incision.
Hammer for scale is 30 cm in length.
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Depositional elements of deepwater clastic systems are
highly variable and include a wide range of gravity flows
with different reservoir properties. They consist of cohe-
sive debris flows and slumps (MTCs), channel complexes
and fine-grained turbidity flows. The occurrence of one
specific gravity flow over another is mainly a function of
sediment supply to the deep portion of the basin. Variations
in sedimentation rates can be related to base-level fluctua-
tionsabovethe shelf edge and/or tectonic activity. Two dif-
ferent scenarios are explored (base-level changes vs. tec-
tonic activity) to explain the succession of gravity flows
observed in the area.

During development of atypical passive-margin sequence,
an early stage of forced regressionislikely to trigger insta-
bility at the shelf edge and deposition of cohesive debris
flows on the slope (Catuneanu, 2006). This could corre-
spond to the lowermost debris flow unit observed on the
western side of thefault. During lateforced regression, the
shelf becomes subaerialy exposed and accumulation of
sand in the deep part of the basin is optimal. Thisisrepre-
sented by the progradation of the incised channel com-
plexes above the submarine fans. As base-level rises, in-
creasing accommodation space is made available on the
shelf, which reduces the amount of coarse sediment
delivered to the deep marine basin.

In the case of atectonically active basin, re-adjustment of
the slope angle may have profound impactson the distribu-
tion of the gravity flows, independently of shoreline shifts.
In thismodel, MTCs observed in the areawould be rel ated
to repeated slopefailureinitiated by tectonic activity. Pau-
city of tectonic activity isinferred during deposition of the
submarine fan/channel complexes, when normal
progradation of the slope environment would have oc-
curred over the basin floor. In contrast, sudden steepening
of the slopein response to fault movement islikely to have
triggered rapid incision and sediment bypass, as repre-
sented by confined mud-filled channels (Figure 6) and
abundant MTCs in the higher portion of the succession.

Even though it isdifficult to clearly separate the effects as-
sociated with shoreline shiftsfrom those driven by tectonic
processes in the rock record, sedimentary rocks of the up-
per Hazelton Group at Mount Dilworth attest to the strong
influence of tectonic input during deepwater sedimenta-
tion. The MTCsare unusually thick (up to 500 m) and con-
stitute more than 50% of the entire sedimentary succession.
This is significantly higher than most well-studied deep-
water passive-margin analogues such as the Isaac Forma-
tion of Western Canada(Gammonet al., 2007; Laurinetal.,
2007; Navarro et a ., 2007; Schwarz and Arnott, 2007), the
West Crocker Formation of Borneo (Crevello et a., 2007)
and the San Vicente Formation of Spain (Arbues et al.,
2007). In addition, sediment bypass facies and repeated in-
cision of channel complexes are too abundant to solely be
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driven by base-level fluctuations. Based on these observa-
tions, the authors conclude that synsedimentary faulting
was a major component in determining the nature of the
gravity flows. Thick MTCswere deposited during fault re-
activation, which interrupted the overall regressive cycle
responsible for progradation of the slope succession over
the basin floor.
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