Thank you!

- Squamish and Lil’wat First Nations
- Maxine Bruce, Tammie Jenkins
- Geoscience BC and NRCan Emerging Renewable Power Program
- Innergex Renewable Energy
- No Limits Helicopters
The Garibaldi Team

• 34 researchers from the Geological Survey of Canada plus 7 Universities (UBC, SFU, DC, UofA, UofC, ETH, Quest)
• 34 people in the field (>400 person days)

Training the next generation
• 3 Post Docs, 6 PhDs, 1 MSc, 1 BSc
The Garibaldi Team

S.M. Ansari, Geological Survey of Canada, Ottawa
A. Calahorrano-Di Patre, Simon Fraser University
Z. Chen, Geological Survey of Canada, Calgary
J.A. Craven, Geological Survey of Canada, Ottawa
J. Dettmer, University of Calgary
C. Hanneson, University of Alberta
F. Hormozzade, Carleton University
M. Harris, University of British Columbia
H. J. Liu, Geological Survey of Canada, Calgary
H. Gilbert, University of Calgary
M. Muhammad, Simon Fraser University
K. Russell, University of British Columbia
R.O. Salvage, University of Calgary
G. Savard, University of Calgary
V. Tschirhart, Geological Survey of Canada, Ottawa
M.J. Unsworth, University of Alberta
N. Vigouroux-Caillibot, Douglas College
G. Williams-Jones, Simon Fraser University
Supporting the transition to a low carbon economy

Net-Zero Emissions by 2050
Expanding renewables

Canada’s energy production is 89% non-renewable
Geothermal is cost competitive

Source: IRENA 2020
Geothermal potential of Canada

Grasby et al. 2012
doi.org/10.4095/292840
Volcanic belts of Canada

- Canada has abundant, volcanoes
- Largely dormant since the Holocene (12,000 years ago)
Garibaldi Volcanic Belt

- Northern Termination of Cascades
- Related to Subduction of ocean crust under North America
- Focus on Mount Meager ~60 km from Pemberton, 140 km from Vancouver

Andrews et al. (2014)
Hetherington (2014)
Mount Meager Volcanic Complex

• Active 2.2 Ma to present
• Most recent eruption 2350 BP (Bridge River event)
• Extensive hydrothermal system (alteration, fumaroles, hot springs) suggest geothermal potential.
South Meager Geothermal Exploration

- Early research and drilling by NRCan and BC Hydro
- Subsequent industry exploration and drilling
- Data public – available at Geoscience BC

Witter, 2019
Mount Meager research well

- NRCan/BC Hydro Collaboration
- World class thermal resource > 250 °C
- First geothermal power production in Canada (250 kw)
Looking into the Heart of the Mountain
Garibaldi Project - Reducing Exploration Risk

Predicting Permeability
- fracture/stress system analyses
- aquifer systems

Heat Resources
- regional thermal properties
- volcanic history

Resource Production
- crustal-scale flow systems
- thermal spring systems

Resource Assessment Methodology

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2019
Where we went

[Map showing various locations and activities labeled with icons such as geologic mapping (348), fracture measurements (54), gravity measurements (126), etc.]
Geologic mapping

- Four new geologic maps
- Studies of faults and fractures that can control fluid flow
- New age dating to provide eruption history
- Underpins all work – informs rock type and characteristics
Fracture studies

- Understanding dominant orientations and frequency of fractures that control fluid flow
- 1500 new measurements
Gravity Survey

- Variations in Earth gravity show low gravity anomalies at the South Meager geothermal area and to the north under Plinth Peak
- Potential signatures of melt and geothermal system
Passive Seismic

- Deployed 59 seismic stations
- Detects shaking from earthquakes (also rock fall, people jumping around sensor…)
- Provides baseline knowledge of natural seismicity in region
Magnetotellurics

- Deep focus examining 2 to ~ 10 km depth
- Results show deep conductor and pathways to shallow level

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2019
Shallow Magnetotellurics

- Shallow focus examining upper 2 km
- Looking for the geothermal reservoir
Shallow Magnetotellurics

- Prominent conductive unit in subsurface
- Hydrothermal zone/fluid filled fractures?
- Need to model data in context of rock properties to resolve

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2019
Remote Sensing

- Defined thermal anomalies in satellite images
- Defined lineaments assuming they represent fractures in rock
AI/ML-enabled geothermal resource evaluation

Multi-Seasonal Landsat images

ML algorithms for automatic feature extraction/characterization/classification

Regional & Field Geology

Geochemistry & Geophysics

AI-assisted data integration and validation

Geological Models

GHF Anomalies

Permeable Network

Geothermal Anomaly Detection

Computer picked geothermal anomalies & AI-assisted interpretation
Resource Modeling

Preliminary results suggest:
- 6-13 MW power for 1 well
- Production for > 30 years
Closed-loop type system

- Rock permeability and water availability are irrelevant to production
- Lower environmental footprint
- Untested in volcanic system but high thermal conductivity is favourable
Closed-loop - Preliminary model results

- Outlet water >200 °C for over 30 years
- Energy production capacity >13 MW
Summary

• Mount Meager is a world class thermal resource
• Potential for world class geothermal system
• All new data available online at GeoScience BC (thousands of measurements and terabytes of data).
Next steps

- **Phase 2** – examine the Mount Cayley area to test methods in a less data rich environment
- Use results to extrapolate geothermal potential over broader Garibaldi Volcanic Belt
- Assess the total potential renewable clean energy supply from BC’s volcanoes and how it can contribute to achieving a Net Zero economy
Questions?