
Project Area 

Geoscience BC conducted an infill stream sediment sampling program in the QUEST-South project area in 2009 and reanalysed archived regional geochemical survey (RGS) samples using ICP-MS in 2010 (Figure 1). Catchments were deter-
mined for these samples in 2011 and a preliminary interpretation of the geochemical data undertaken using the dominant rock type in the catchments to level the data for the effects of variable background. In this new Geoscience BC pro-
ject we apply multivariate statistical methods, including the random forests classification method, to interpret the data from 8545 samples. Data for 35 elements were levelled for laboratory analytical effects and values below the lower limit 
of detection imputed prior to a centred log ratio transformation to moderate the effects of geochemical closure.  Multivariate methods were applied to the clr-transformed data for the purposes of discovering patterns and features that po-
tentially describe geochemical, geological, geophysical and the effects of gravitational processes (Grunsky et al., 2010). These methods included principal-component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE) 
(van Maaten and Hinton, 2008). Each sample was also attributed with the closest MINFILE occurrence, excluding anomalies and showings, within 2.5 km of the sample site (Figure 3). MINFILE occurrences were grouped based on similarities 
in BCGS mineral deposit models and geochemical signatures for training purposes (Figure 4). A training data set of 474 samples, including 100 samples not attributed with a MINFILE occurrence and the most significant principal components 
(Figure 5), was used to generate random forests prediction model from which posterior probabilities were estimated for the remaining 8071 samples.  

Introduction 

Figure 1: Location of the QUEST-South project area. 
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Two approaches using the random forests procedure have been trialled: principal component analysis (PCA) and t-SNE with 9 factors. The posterior 
probabilities for various grouped mineral deposit models have been used to generate kriged images to test for geospatial coherence in the predic-
tions. These have been compared to kriged images for porphyry Cu-Au-Mo deposits generated using raw data and data corrected for the effects of 
catchment bedrock type (Figures 6 - 9). The t-SNE9 posterior probabilities provide a better visual fit to the distribution of known mineral occurrenc-
es and have a slightly higher level of accuracy compared to the posterior probabilities obtained using PCA (Figures 10 & 11). Catchment polygons 
have been thematically coded using the t-SNE9 posterior probabilities to provide maps of exploration potential for 13 of the grouped mineral depos-
it types for which measurable accuracies in prediction were obtained. The use of random forests provides predictions of mineral occurrences that 
are better than those obtained by manual data analysis but does require some optimisation in its use.  

Principal Components PCA vs tSNE9 Metrics Distance to MINFILE Site 

Figure 2: Example of a prospectivity map product for porphyry Cu-Au-Mo deposits in which catch-
ments have been thematically codes based on random forests t-SNE9 posterior probabilities. 

Figure 3: Geographic distribution of the distance measures between 
stream-sediment sites and the closest MINFILE site . 

Figure 4: Legends showing colours and symbols for lithology 
(left) mineral deposit types as BCGS Mineral Deposit Model 
mnemonics (centre) and short descriptions of the respective 
BCGS Mineral Deposit Models (right).  

Figure 8: Geographic distribution of individual sites for GroupModel L02L04 overlain on a 
kriged image of the posterior probabilities for porphyry Cu-Au-Mo (L02L04) prediction us-
ing random forests and the PCA metric, based on the train + test data and a distance 
threshold of 2500 m. MINFILE sites tagged as L02L04 are shown as yellow crosses. Stream-
sediment sites identified as class L02L04 by random forests are shown as red dots. Areas of 
increased potential for L02L04 deposits are shown by colour shading of the kriged image.  

Figure 7: Weighted sums model consisting of Log10 Cu multiple regression residuals (2), Log10 
Mo multiple regression residuals (1) and Log10 Fe (-2) shown with MINFILE porphyry Cu-Au-Mo 
occurrences (in black symbols) and random forests class predictions for porphyry Cu-Au-Mo (in 
red symbols) . Areas of increased potential for L02L04 deposits are shown by colour shading of 
the kriged image. 

Figure 6: An additive model of 2 Log10 Cu multiple regression residuals regressed against 
Log10 Fe plus 1 Log10 Mo multiple regression residuals regressed against Log10 Fe shown 
with MINFILE porphyry Cu-Au-Mo occurrences (in black symbols) and random forests 
class predictions for porphyry Cu-Au-Mo (in red symbols). Areas of increased potential 
for L02L04 deposits are shown by colour shading of the kriged image. 

Figure 5: a) Biplot of PC1-PC2 showing the relative relationships between the 
principal terranes in the Quest-South region. The Omineca terrane shows rela-
tive enrichment in Th-U-La while the Coast terrane shows relative enrichment 
of Sb-As indicating provenance with chalcophile-rich rocks and relative enrich-
ment in Th-U-La. The Intermontane terrane shows a mixture of lithophile, si-
derophile and chalcophile elements; b) Biplot of PC1-PC2 showing the relative 
relationships between the generalized lithologies of the region. Felsic intrusive 
rocks show relative enrichment in Th-U-La and sedimentary rocks show relative 
enrichment in Sb-As. Volcanic rocks show a mixture of lithophile and sidero-
phile elements; c) Biplot of PC1-PC2 showing the relative relationships between 
the GroupModels as defined from the proximity of stream sediment sites and 
MINFILE sites. See Figure 8d for an interpretation of the patterns; d) Biplot of 
PC1-PC2 showing the mean values of the PC1-PC2 scores for each of the 
GroupModel classes. Relative relationships between the GroupModels are de-
fined from the proximity of stream-sediment sites and MINFILE sites. Epither-
mal Au-Ag deposits show relative enrichment with siderophile elements. 
Porphyry deposits show relative enrichment with chalcophile elements. Car-
bonatite, REE, basal U, W skarn and sediment-hosted deposits show relative 
enrichment with U-Th-La-W-Tl.  See Figure 4 for the legend of colours and sym-
bols. Note that the scaling of the mean values has been changed to enhance 
the separation. The relative positions of the GroupModel icons do not match 
the scales of the biplot axes.  

Random Forests Compared with Conventional Approaches 

Figure 11: Geographic distribution of individual sites for GroupModel I01 overlain on a 
kriged image of the posterior probabilities for Au quartz veins (I01) prediction using random 
forests and the t-SNE9 metric, based on the train + test data and a distance threshold of 
2500 m. MINFILE sites tagged as I01 are shown in yellow crosses. Stream-sediment sites 
identified as class I01 by random forests are shown in red dots. Areas of increased potential 
for I01 deposits are shown by colour shading on the kriged image.  

Figure 9: Geographic distribution of individual sites for GroupModel L02L04 overlain on a 
kriged image of the posterior probabilities for porphyry Cu-Mo-Au (L02L04) prediction using 
random forests and the t-SNE9 metric, based on the train +  test data and a distance thresh-
old of 2500 m. MINFILE sites tagged as L02L04 are shown in yellow crosses. Stream-sediment 
sites identified as class L02L04 by random forests are shown in red dots. Areas of increased 
potential for L02L04 deposits are shown by map colour shading of the kriged image  

Thematic Catchment Maps Legend 

Conventional Additive Index Corrected for Catchment Lithology Weighted Sums Model Corrected for Catchment Lithology 

Random Forests Posterior Probabilities by PCA Random Forests Posterior Probabilities by t-SNE9 Random Forests Posterior Probabilities by t-SNE9 

Random Forests Posterior Probabilities by PCA 

Figure 10: Geographical distribution of individual sites predicted for GroupModel I01 over-
lain on a kriged image of posterior probabilities for Au quartz veins (I01) prediction using 
random forests and the PCA metric, based on the train + test data and a distance threshold 
of 2500m. MINFILE sites tagged as I01 are shown in yellow crosses. Stream-sediment sites 
identified as class I01 by random forests are shown in red dots.  


