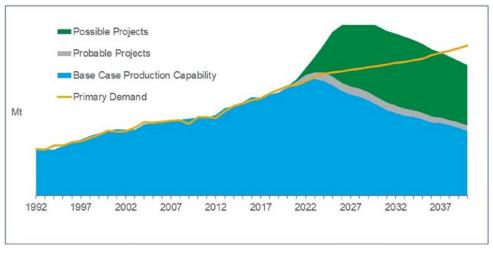


THE UNIVERSITY OF BRITISH COLUMBIA

Arc Evolution and Variability in Magmatic Porphyry Fertility of the Southern Quesnel Arc, south-central British Columbia (NTS082E, L, 092H, I, P, 093A, B)

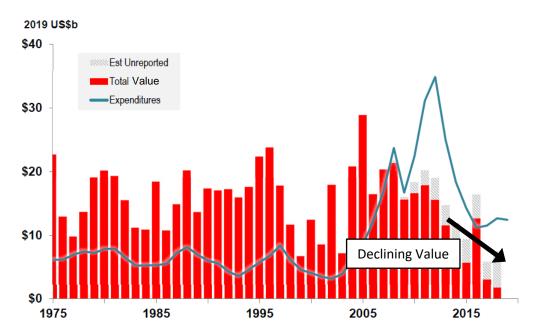

Taylor J. Ledoux* and Craig J.R. Hart

MDRU – Mineral Deposit Research Unit, Earth, Ocean and Atmospheric Sciences, University of British Columbia

Demand for Copper

Wood Mackenzie (2019)

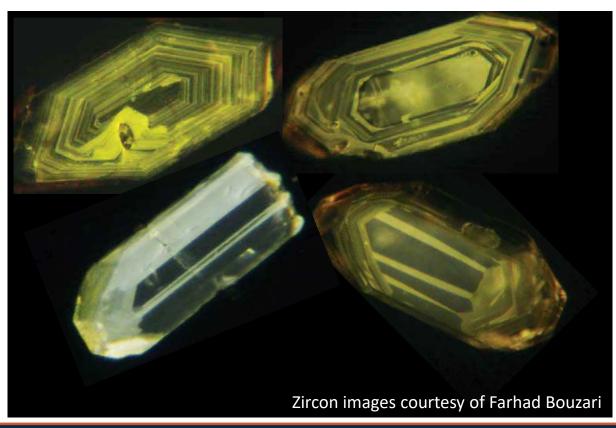
Copper usage has **increased by 3.4%** annually since the 1900's.


Reliance on **renewable energy** and **EV's** will continue to drive global demand.

New discoveries are needed to meet Cu demand.

UBC THE UNIVERSITY OF BRITISH COLUMBIA

Cost and Value in Exploration: 1975-2018


Conventional Exploration Methods are **ineffective**

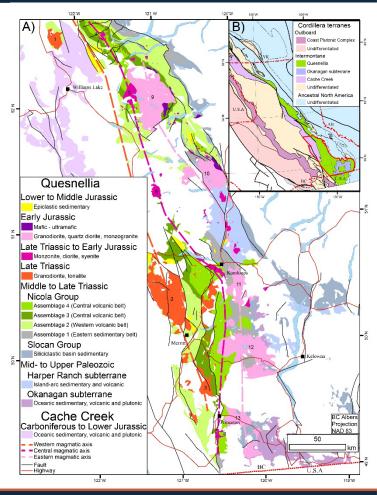
New Tools are needed to identify deposits and asses their economic potential

Schodde (2019)

Porphyry Magma Fertility – Trace Elements in Zircon (TEZ)

Regional Geology

Quesnellia – Middle Triassic to Early Jurassic:


- Nicola and Rossland Group island-arc assemblages
- Slocan Group siliciclastic basin
- Basement of Middle to Upper Paleozoic oceanic Okanagan and island-arc Harper Ranch subterranes.

Eastern Quesnellia:

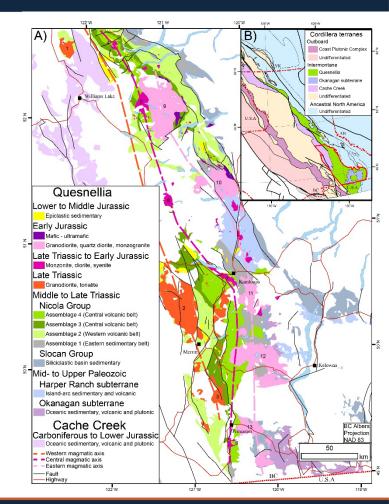
 Unconformable on oceanic Slide Mountain terrane and pericratonic Kootenay terrane.

Western Quesnellia:

 mid-Mesozoic oceanic Cache Creek terrane faulted against the western margin of Quesnellia.

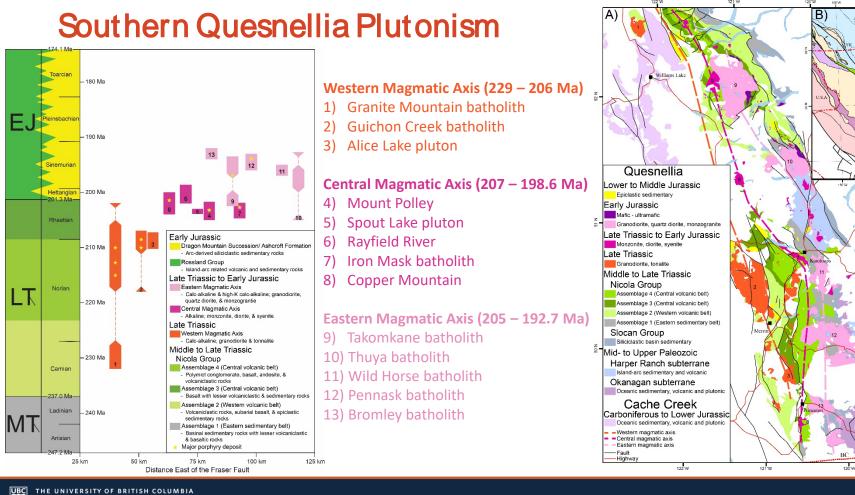
Nicola Group

Assemblage 1 - Middle Triassic (Anisian and Ladinian)


- Basin sedimentary rocks with
- local volcaniclastic and basaltic rocks.
- Assemblage 2 Late Triassic (Carnian and early Norian)
- Volcanic sandstone and conglomerate intercalated with
- calc-alkaline to tholeiitic subaerial basaltic flows and breccias.

Assemblage 3 - Late Triassic (Norian)

- High-K, calc-alkaline to alkaline basaltic flows intercalated with
- lesser volcaniclastic and sedimentary rocks.


Assemblage 4 - Late Triassic (Rhaetian)

- Dominated by polymict conglomerate with
- lesser calc-alkaline to alkaline basalt and andesite.

50

C Albers

Projection

JAD 83

Cordillera terranes

Undifferentiated

Undifferentiated

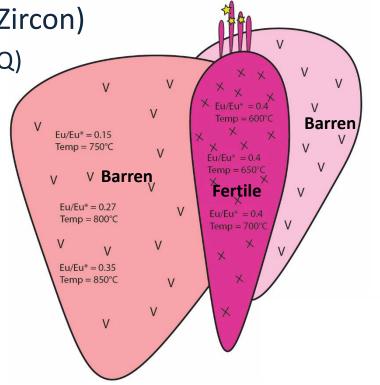
Ancestral North America

Outboard Coast Plutonic Complex Undifferentiated ntermontane Quesnellia Okanagan subterrane Canho Creek

Magmatic Axes Characteristics

	Western magmatic axis	Central magmatic axis	Eastern magmatic axis
Age (Ma)	229–206	207–198.6	202–192.7
Magmatic affinity	Calc-alkaline	Alkaline	Calc-alkaline, high-K calc-alkaline
Predominant rock type	Granodiorite and tonalite	Diorite and monzonite	Granodiorite and quartz diorite
Batholith area (km ²)	up to 1300	32–120	up to 1300
Batholith thickness (km)	>6	4	
Average emplacement depth (km)	5	1	4
Major porphyry districts	Highland Valley and Gibraltar	Copper Mountain, Afton-Ajax, and Mount Polley	Brenda and Woodjam
Metal assemblages	Cu-Mo±Au	Cu-Au	Cu-Mo & Cu-Au
Historical copper production (Mt)	6.39	1.83	0.28
Current copper resource (Mt)	2.81	4.1	0.79*
Total contained copper (Mt)	9.2	5.93	1.07

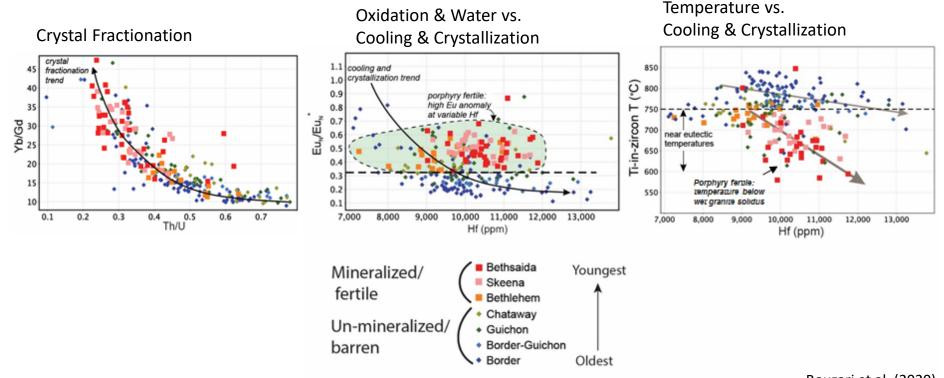
* inferred resource

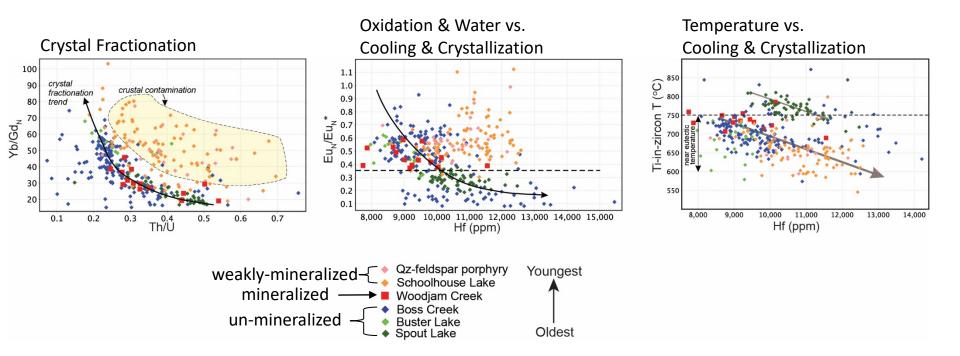


Porphyry Magma Fertility

Porphyry Deposits

Key Magmatic Parameters (Proxies in Zircon)


- **1) Oxidation State** (Eu/Eu*, Ce/Ce*, & ΔFMQ)
- 2) **Temperature** (Ti-in-zircon-thermometer)
- 3) Water Content (Eu/Eu*)
- 4) Metal Content
- 5) Chlorine Content
- 6) Sulphur Content


Trace Elements in Zircon – Western Axis – Guichon Creek batholith

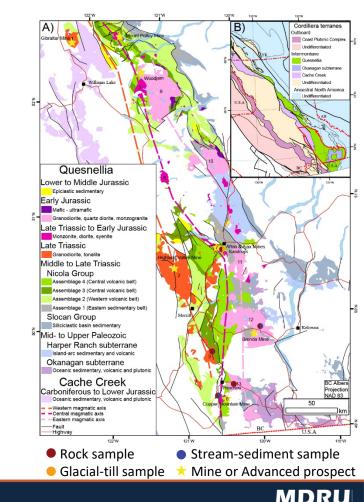
UBC

Trace Elements in Zircon – Eastern Axis – Takomkane batholith

Bouzari et al. (2020)

Sampling-Quesnellia Plutonism

Western Axis (1)


• Alison lake pluton – 1 rock

Central Axis (8)

- Copper Mountain intrusive complex 2 rock and 1 stream
- Iron Mask batholith 2 rock and 3 glacial-till

Eastern Axis (3)

- Pennask batholith 1 rock and 1 stream
- Bromley batholith 1 rock

After completion of the analytical work, we will:

- 1. characterize the magmatic fertility of each intrusion, batholith and magmatic axes;
- 2. identify evidence of **magmatic processes** such as magma mixing, fractionation, mafic magma recharge, and volatile saturation;
- 3. attempt to determine how these magmatic processes **influence the formation of porphyry copper deposits**; and
- 4. determine what **mineral chemistry signatures** in zircon are expressed by these processes.

Thanks for listening

Corresponding author Taylor J. Ledoux tledoux@eoas.ubc.ca

BC