
Key Considerations for Carbon Dioxide Sequestration in the Lower Mainland,
Southwestern British Columbia (Parts of NTS 092G/01–03)

M. Nazemi
1
, Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia,

maziyar_nazemi@sfu.ca

Nazemi, M. (2024): Key considerations for carbon dioxide sequestration in the Lower Mainland, southwestern British Columbia (parts of
NTS 092/G01–03); in Geoscience BC Summary of Activities 2023, Geoscience BC, Report 2024-01, p. 101–114.

Introduction

The continuous rise in atmospheric carbon dioxide (CO2)

levels, initially observed by Keeling in 1960 (Keeling,

1960), has persisted over time, with annual peak concentra-

tions showing a consistent upward trend (Ewald, 2013;

Keighley and Maher, 2015). Although CO2 is naturally

generated, the predominant cause of recent increases, span-

ning from the 1800s to the present, is largely attributed to

human activities, specifically the use of carbon-based re-

sources such as coal, oil and methane-rich natural gas

(Keighley and Maher, 2015). Elevated CO2 concentrations

alter the Earth’s atmospheric composition by amplifying

the natural greenhouse effect, resulting in a warming influ-

ence on the planet’s surface (Bachu, 2003). As the Earth’s

climate continues to warm, the frequency and intensity of

extreme weather events, including phenomena like heat

domes, tropical cyclones, increased precipitation and

heightened instances of flooding, are expected to rise

(Flannigan and Wagner, 1991). Given the substantial risks

these events pose to critical societal infrastructure, con-

cerns regarding the societal impacts of climate change have

understandably intensified (Bratu et al., 2022). Neverthe-

less, it is important to acknowledge that CO2 emissions are

anticipated to continue their upward trajectory, as the

global transition toward a carbon-neutral economy is

projected to extend over several decades (U.S. Energy

Information Administration, 2021).

Discovering practical solutions for reducing carbon emis-

sions while maintaining the current standard of living and

improving the quality of life in developing nations necessi-

tates cost-effective and innovative approaches. In this con-

text, the most promising strategy for promptly and moder-

ately reducing CO2 emissions is CO2 capture and

underground sequestration (Intergovernmental Panel on

Climate Change, 2014). Carbon capture and storage (CCS)

involves the extraction of CO2 from industrial sources, fol-

lowed by its injection into suitable geological formations.

Numerous studies (Kaszuba et al., 2003; Bachu and Gunter,

2005; Kharaka et al., 2006; Shukla et al., 2010; Stephenson

et al., 2019; Pearce et al., 2021) have explored and vali-

dated the feasibility of CCS. Typically, CCS implementa-

tion is concentrated in regions with significant hydrocar-

bon production (Lane et al., 2021). Conversely, areas with

limited oil and gas exploration tend to overlook CCS as-

sessment and opportunities, often due to the presumption

that underground storage is impractical.

The Lower Mainland of British Columbia (LMBC) has pre-

viously undergone assessments related to its hydrocarbon

potential and suitability for natural gas storage, suggesting

that it could serve as an accessible and potentially economi-

cally viable site for CO2 storage (Gordy, 1988; Hannigan et

al., 2001). However, to date, there has been limited effort

directed toward evaluating the feasibility of CCS in the

LMBC. The sedimentary layers beneath the LMBC remain

inadequately understood, particularly at greater depths, and

a detailed examination of the geological context, including

the interpretation of depositional environments and facies

analysis, has not been undertaken. To address this signifi-

cant knowledge gap, this research provides a concise over-

view of the essential considerations involved in the assess-

ment of CO2 sequestration potential within saline aquifers

situated in the LMBC. These considerations encompass

factors such as geothermal gradient and pressure, reservoir

thickness, salinity, mineral composition, porosity and

permeability characteristics, seismic activity and fault

distribution.

Study Area

The geological strata beneath the LMBC are part of the

broader geological feature known as the Georgia Basin,

which is characterized by a northwest-southeast orientation

and is marked by a structural and topographic depression.

The Georgia Basin spans an extensive area of approxi-

mately 18 000 km2 and includes the Strait of Georgia, east-

ern Vancouver Island, the Fraser River Lowland and the

northwestern region of the State of Washington, United

States (Figure 1; Molnar et al., 2010).

The sedimentary deposits within the Georgia Basin can be

categorized into three primary tectonostratigraphic clastic
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sedimentary units: firstly, the predominantly Upper Creta-

ceous Nanaimo Group; secondly, the Paleogene Hunting-

don Formation; and, thirdly, the Neogene Boundary Bay

Formation (Figure 1; Monger, 1990; Groulx and Mustard,

2004; Molnar et al., 2010). The LMBC includes Metro Van-

couver, the Fraser River Lowland and the adjacent moun-

tainous areas. This region is home to more than 60% of

British Columbia’s (BC) population, exceeding 3 million

residents, making it the third-largest urban area in Canada.

The LMBC is geographically defined by the Coast Moun-

tains to the north, the Cascade Mountains to the east and the

international border separating Canada and the United

States to the south. Furthermore, the LMBC features prom-

inent population centres that also serve as significant indus-

trial hubs, housing numerous large carbon-emitting

facilities.

Geological Background

Tectonic Setting and Basin Type

The Canadian Cordillera is geologically categorized into

five distinct morphological belts, arranged from west to

east: the Insular, Coast, Intermontane, Omineca and Fore-

land belts (Figure 2; Monger and Price, 2002). Each of

these belts is characterized by a unique combination of geo-

logical features, including landforms, rock types, metamor-

phic grade and structural characteristics (Gabrielse and

Yorath, 1991). The formation of the southern Canadian

Cordillera can be attributed to the amalgamation of two su-

perterranes, which also correspond to two of the morpho-
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Figure 1. Location map of the Georgia Basin and Lower Mainland of British Columbia (LMBC), and simplified geological
map of southwestern British Columbia, Canada. Outcrop areas in the Georgia Basin include Upper Cretaceous Nanaimo
Group strata exposed in the Comox, Nanaimo and Cowichan Valley sub-basins (green); Paleogene and Neogene strata in
the Whatcom sub-basin (orange); and Paleogene and Neogene strata in the Chuckanut sub-basin (blue). The inset figure
shows the location of the larger map within the context of the province of British Columbia and the rest of Canada. Figure re-
printed from Huang et al. (2022).

Figure 2. Morphogeological belts of the Canadian Cordil-
lera (from Wheeler et al., 1991).



logical belts (Figures 2, 3). Specifically, the eastern Inter-

montane Superterrane was accreted during the Middle

Jurassic, whereas the western Insular Superterrane was

accreted during the Early Cretaceous (Monger, 1991a, b;

Zelt et al., 2001). These two superterranes are separated by

the Coast Belt or Coast Plutonic Complex (CPC), which

represents a region characterized by high-grade metamor-

phic rocks and intrusive plutonic formations. It is believed

that the Coast Belt or CPC formed during the Early Creta-

ceous when the Insular Superterrane accreted to the

western margin of North America (Monger et al., 1994).

The Georgia Basin is a Cretaceous to Cenozoic fore-arc ba-

sin that straddles the boundary between the Insular Super-

terrane and the CPC (Figures 1, 2; England, 1991; England

and Bustin, 1998; Monger and Price, 2002). Based on the

structural evolution of the Canadian Cordillera, previous

workers have posited that the Georgia Basin was developed

in the arc-trench gap between Wrangellia and North Amer-

ica and overlies the eastern portion of Wrangellia and the

western portion of the CPC (Figure 1; Muller and Jeletzky,

1970; Bustin and England, 1991; England, 1991; England

and Calon, 1991).

The preserved thick successions of shallow-marine proxi-

mal facies could reflect a more oblique convergent charac-

ter for the Georgia Basin. However, recent studies of fore-

arc basins globally have identified thick basal successions

of terrestrial and shallow-marine strata in similar fore-arc

settings, suggesting shallow-marine strata are common in

these basins and particularly in ridged fore arcs (Takano et

al., 2013; Jones, 2016; Takano and Tsuji, 2017; Kent et al.,

2020).

The siliciclastic sedimentary fill within the Georgia Basin

can locally reach a thickness exceeding 6 km (England and

Bustin, 1998). This sedimentary fill consists of Late Creta-

ceous through to modern strata (Figure 3; Hannigan et al.,

2001). The Georgia Basin is subdivided into five distinct

sub-basins (Figure 1; Mustard and Monger, 1994; England

and Bustin, 1998; Hannigan et al., 2001; Huang et al., 2019,

2022; Kent et al., 2020; Girotto, 2022). The Nanaimo sub-

basin encompasses the southeastern coast of Vancouver Is-

land, the adjacent Strait of Georgia and the Gulf Islands.

The Comox sub-basin is located farther north, along the

east-central coast of Vancouver Island and the adjacent

Strait of Georgia. The Cowichan Valley sub-basin was ini-

tially designated as a separate sub-basin due to uncertain-

ties regarding its relationship with the rest of the Nanaimo

Group. Subsequently, later studies incorporated the

Cowichan Valley sub-basin into the Nanaimo sub-basin

without providing a specific rationale for this revision

(Clapp, 1913). The Cowichan Valley sub-basin was subse-

quently redefined as a distinct sub-basin by Huang et al.

(2022) and Girotto (2022). This redefinition was based on

differences in detrital zircon age populations and maximum

depositional ages observed in strata near the basal uncon-

formity compared to strata in the Comox and Nanaimo sub-

basins.

The Chuckanut and Whatcom sub-basins encompass spe-

cific geographic regions, with the Whatcom sub-basin cov-

ering the Fraser Delta and the Chuckanut sub-basin encom-

passing northwestern Washington (Figure 1; Hannigan et

al., 2001; Kent et al., 2020). The Whatcom sub-basin hosts

sedimentary strata of the Nanaimo Group. These strata un-

derlie sedimentary layers, including Paleogene sedimen-

tary rocks of the Huntingdon Formation, Neogene sedi-

mentary rocks of the Boundary Bay Formation and

Quaternary sediments from the Fraser River (Figure 4; Zelt

et al., 2001).

The Chuckanut sub-basin is separated from the Whatcom

sub-basin by the Lummi Island fault, which has experi-

enced more than 1.5 km of southward displacement (Miller,

1963; Johnson, 1985). The sedimentary fill within the

Chuckanut sub-basin comprises the Chuckanut Formation,
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Figure 3. Idealized structural cross-section of the southern Georgia Basin based on LITHOPROBE data, modified after England and Bustin
(1998), England and Calon (1991) and Gordy (1988). Question marks along the fault surfaces indicate interpreted locations. Paler shades
of purple and green are used on the strata below the Strait of Georgia, but they are still part of the Wrangellia (purple) and Jurassic–
Cretaceous (green) sequences. Abbreviations: NE, northeast; SW, southwest; U_Cret, Upper Cretaceous.



Boundary Bay Formation and overlying Quaternary

deposits (Figures 1, 4).

General Stratigraphy

The basement underlying the Georgia Basin is primarily

composed of Wrangellia terrane, which consists of several

geological components. These include the Sicker arc,

formed during the Silurian to Devonian as an island arc; a

Triassic mid-ocean basalt plateau (the Karmutsen Forma-

tion); the Bonanza arc, a Jurassic bimodal arc; and sedi-

mentary rocks associated with these features (Huang et al.,

2022). In the eastern part of the Georgia Basin, the base-

ment comprises CPC, a continental arc that spanned from

the Middle Jurassic to the Eocene (Monger and Journeay,

1994). Additionally, the Gambier Group, a sequence of

Lower Cretaceous volcanogenic sedimentary and volcani-

clastic rocks, forms part of the basement in this region (Fig-

ure 4; Lynch, 1991, 1992; Monger and Journeay, 1994).

The sedimentary fill of the Georgia Basin, which ranges

from mainly Upper Cretaceous to the lowermost Paleo-

cene, is primarily composed of the Nanaimo Group, with a

thickness of approximately 4 km (Figures 3, 4; Mustard,

1991; Mustard et al., 1994; England and Bustin, 1998;

Huang et al., 2022).

The Nanaimo Group is informally subdivided into two

main units, known as the lower and upper Nanaimo Group.

The lower Nanaimo Group primarily consists of continen-

tal to shallow-marine strata and is found in sedimentologi-

cally isolated sub-basins, including the Comox, Nanaimo

and Cowichan Valley sub-basins (Figure 1; Girotto, 2022;

Huang et al., 2022). Within the Comox and Nanaimo sub-

basins, the lower Nanaimo Group is further divided into
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Figure 4. Simplified stratigraphic column for the Georgia Basin (with data from Haggart,
1992, 1993; Hannigan et al., 2001; Bain and Hubbard, 2016; Englert et al., 2018; Huang et
al., 2019; Kent et al., 2020). Potential reservoir strata occur in coarse clastic rocks of the
Huntingdon and Boundary Bay formations and the Nanaimo Group. Abbreviations: E, east;
Eo., Eocene; Fm, Formation; Gp, Group; Mio., Miocene; Oligo., Oligocene; Paleo.,
Paleocene; Pleist., Pleistocene; Plio., Pliocene; QU., Quaternary; W, west.



lithostratigraphic formations. These formations alternate

between predominantly coarse- and fine-grained strata. In

the Comox sub-basin, the lower Nanaimo Group comprises

the Comox and Trent River formations. The Nanaimo sub-

basin includes the Sidney Island, Barnes Island, Comox,

Haslam, Extension, Pender and Protection formations (Fig-

ure 5; Girotto, 2022).

The transition from the lower to the upper Nanaimo Group

marks the consolidation of the previously isolated sub-

basins into a unified basin, initiating deep-marine sedimen-

tation across the entire basin (England, 1991; Mustard,

1991; Mustard and Monger, 1994; Kent et al., 2020;

Girotto, 2022). The upper Nanaimo Group comprises for-

mations such as the Cedar District, De Courcy, Northum-

berland, Geoffrey, Spray and Gabriola formations (Fig-

ure 5; Mustard and Monger, 1994; Huang et al., 2019,

2022; Kent et al., 2020). Although the Nanaimo Group is

predominantly exposed in eastern Vancouver Island, these

strata also extend into the subsurface beneath the Strait of

Georgia and the LMBC (Figures 3, 4). However, the under-

standing of the subsurface distribution and characteristics

of the Nanaimo Group strata remains limited due to a lack

of comprehensive data.

The Huntingdon Formation in British Columbia and the

Chuckanut Formation in Washington represent the primary

sedimentary fill during the Paleogene within the Georgia

Basin (Figure 4; Vance, 1975; Johnson, 1984; England and

Hiscott, 1992; Hannigan et al., 2001). In both the Canadian

and American portions of the Georgia Basin, Paleogene

strata are characterized predominantly by continental de-

posits (Johnson, 1984, 1991; Mustard and Monger, 1994;

Hannigan et al., 2001). Intrusive Oligocene dikes and sills

are locally observed in the Vancouver area, penetrating

both Paleogene and Cretaceous strata (Figure 4; Mustard et

al., 1994). Within the LMBC, the Huntingdon Formation is

disconformably situated over the upper Nanaimo Group
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Figure 5. Nanaimo Group lithostratigraphy in the Nanaimo and Comox sub-basins (Mustard et al., 1994; Haggart et al., 2005) including
foraminiferal (Sliter, 1973; McGugan, 1979) and molluscan biozones (Muller and Jeletzky, 1970; Haggart et al., 2005; Ward et al., 2012;
Haggart and Graham, 2018). In the formation column, yellow indicates strata that comprise dominantly sandstone and/or conglomeratic in-
tervals, and grey indicates dominantly mudstone and shale. Figure reprinted from Huang et al. (2022). Abbreviations: Is., Island; L, Lower;
M, Middle; SB, sub-basin; U, Upper.



(Figures 3, 4; Mustard et al., 1994). Within the Whatcom

sub-basin, there exists a substantial and distinctive succes-

sion of mainly Miocene sedimentary rocks that differ from

the older Cenozoic sedimentary rocks (Hopkins, 1966,

1968; Rouse et al., 1990; Mustard and Rouse, 1991; Mus-

tard et al., 1994). These sedimentary rocks are referred to as

the Boundary Bay Formation (Mustard et al., 1994) and are

primarily exposed in scattered outcrops along the lower

Fraser River valley and to the east and northeast of Belling-

ham in Washington (Figure 1; Hannigan et al., 2001).

Exploration History and Regional Studies

The scientific exploration of the Georgia Basin has a rich

history spanning over 140 years, initially driven by the dis-

covery of substantial bituminous coal reserves in the region

between 1850 and the early 1900s. Subsequently, the basin

garnered scientific attention due to its potential for signifi-

cant hydrocarbon deposits (Bustin and England, 1991;

Bustin, 1995).

Exploration surveys (e.g., geological, seismic, gravimetric,

magnetic) and drilling for hydrocarbons have been con-

ducted intermittently in the basin since the early 1920s,

with little tangible success. The first petroleum exploration

wells were drilled prior to the acquisition of the first seis-

mic lines, with the first well drilled in Whatcom County,

Washington, in 1901, and the first well in the Fraser Valley,

Canada, drilled in 1906 (Johnston, 1923; McFarland,

1983). Of all 118 wells drilled for oil and gas exploration

within the Georgia Basin (particularly in the Canadian

part), only 44 wells have known location and drilling infor-

mation (Figure 6). Twenty-four of the drilled wells within

the Canadian part of the Georgia Basin have wireline log

data (11 wells in the LMBC and 13 wells on Vancouver

Island; Figure 6).

The first basin-scale exploration survey was a regional

aeromagnetic geophysical survey, led by the Geological

Survey of Canada in 1955. In 1959, a gravity survey was

conducted by Petcal Ltd., which encompassed most of the

Fraser Valley and west of Abbotsford. In 1959, the first

large-scale seismic reflection survey was conducted by

Richfield Oil Corporation. The coverage of the seismic re-

flection survey extended from Abbotsford to the Strait of

Georgia, and between the Fraser River and the United

States border. In 1977, a seismic program was conducted by

BC Gas (now FortisBC) to assess the potential for under-

ground gas storage in the LMBC; this program involved ac-

quiring 322 km of two-dimensional (2-D) seismic lines.

Geophysical surveys outside of the LMBC include surveys

in the United States, the Strait of Georgia and Vancouver Is-

land. In the United States, CGG (Companie Général

Géophysique) acquired seismic reflection data in 1985 in

Whatcom County. In 1962, Canadian Superior Oil Ltd. ac-

quired roughly 245 km of gas-exploder seismic data in the

Strait of Georgia. Soon after, the British American Oil

Company Limited acquired 1150 km of gas-exploder ma-

rine seismic data in the Strait of Georgia. An extensive ma-

rine seismic program was performed by Texaco Explora-

tion Canada Ltd. in the Strait of Georgia from 1968 to 1969,

which acquired 300 km of marine seismic data. In 1987,

British Petroleum Resources Canada Ltd. acquired 160 km

of seismic data on eastern Vancouver Island. Following that

survey, two wells were drilled into seismically defined

structures. Offshore seismic data remain difficult to obtain

in the Strait of Georgia.

Petroleum Geology

Reservoir Potential of Mesozoic and Cenozoic Strata
in the LMBC

The Nanaimo Group contains the oldest strata in the Geor-

gia Basin that are inferred to have significant reservoir po-

tential (England, 1991; Hannigan et al., 2001). Generally,

the lithoformations within the Nanaimo Group consist of

alternating sequences of coarse-grained units dominated by

sandstone and conglomerate and fine-grained units domi-

nated by mudstone (Figure 5; England and Bustin, 1998;

Kent et al., 2020; Huang et al., 2022). This simplified stra-

tigraphy remains reasonably accurate when considering the

lower Nanaimo Group in recently developed genetic strati-

graphic frameworks (Kent et al., 2020; Girotto, 2022;

Huang et al., 2022). However, in the upper Nanaimo

Group, the positioning of lithoformations depends more on

the architecture of the interpreted turbidite system, leading

to greater variability (Bain and Hubbard, 2016; Englert et

al., 2018; Huang et al., 2022).

The Nanaimo Group encompasses a diverse range of

depositional environments. It includes neritic to bathyal

marine settings represented by deep-marine turbidites, sub-

marine fans and slope facies. Additionally, there are shal-

low marine and littoral facies that document marginal ma-

rine deposition (Mustard et al., 1994; Katnick and Mustard,

2003; Johnstone et al., 2006; Hamblin, 2012; Girotto,

2022). Specifically, the lower Nanaimo Group is character-

ized by coastal, paralic and nonmarine deposition, whereas

the upper Nanaimo Group is dominated by deep-marine

and submarine-fan complexes due to the tectonic deepen-

ing of the basin at the end of the deposition of the lower

Nanaimo Group (Girotto, 2022; Huang et al., 2022).

The Paleogene Huntingdon Formation and its Chuckanut

Formation equivalent are composed of clastic deposits of

fluvial and alluvial origins (Johnson, 1984; Gilley, 2003).

In the subsurface, the Huntingdon Formation is interpreted

as a substantial fluvial sequence featuring laterally accre-

ting meandering channels within a floodplain dominated

by sand (Mustard et al., 1994; Gilley, 2003). The primary

rock types found within these formations are medium- to

coarse-grained sandstone and conglomerate, with lesser
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occurrences of shale, mudstone, siltstone and lignite

(Gilley, 2003).

Notably, potential reservoir facies are associated with the

coarse clastic deposits present in these formations

(Hannigan et al., 2001). In comparison to sandstones in the

Nanaimo Group, the Paleogene sandstones display less

degradation, contain less silica cement and exhibit lower

compaction levels (Hannigan et al., 2001; Gilley, 2003). As

a result, rocks with reservoir-quality properties are more
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Figure 6. a) Digital elevation model and bathymetry of the Georgia Basin (Natural Resources Canada, 2021). b) Location of drilled wells in
the Georgia Basin for which drilling data (e.g., hole location, kelly bushing, depth, etc.) are available. Among the 44 wells in the Georgia Ba-
sin with drilling data, only 24 have wireline log data: 11 in the Lower Mainland of British Columbia (LMBC) and 13 on Vancouver Island.



likely to be found in Cenozoic sedimentary rocks than in

the Nanaimo Group (Hannigan et al., 2001).

Gordy (1988) noted that potential sandstone reservoirs in

southwestern British Columbia exhibit porosities varying

from 8 to 34%, with an average of 15%, and in Washington,

porous sandstone displays an average porosity range of 12

to 15%. Additionally, there is evidence of secondary frac-

ture porosity, likely resulting from substantial water and

gas flows at depths exceeding 2000 m, especially in cases

where primary matrix porosity is minimal.

Seal Potential of Mesozoic and Cenozoic Strata

The geological storage of CO2 demands meticulous design

to ensure the containment of CO2 within porous rock for-

mations, thus preventing unintended leakage. In this con-

text, the concept of structural trapping assumes paramount

significance. To achieve secure storage, the injection of

CO2 into porous and permeable geological strata should be

executed beneath a stratigraphic layer characterized by

extensive lateral distribution, substantial thickness and low

permeability properties, which serve as an effective imper-

meable seal. This stratigraphic sealing layer plays a pivotal

role in halting the buoyant upward movement of CO2. Gen-

erally, Cretaceous reservoirs benefit from adequate lateral

and upper sealing provided by the presence of multiple

interbedded shale and mudstone units within the Georgia

Basin, as detailed by Hannigan et al. (2001). Furthermore,

structural sealing mechanisms are observed in the LMBC,

potentially serving as seals in situations where sandstone

and shale units intersect along fault lines. However, it is im-

portant to note that the sealing potential may be diminished

for Paleogene strata, primarily due to their high sand con-

tent (England, 1991).

Suitable Characteristics for CO2

Sequestration in Saline Aquifers in LMBC

The most suitable basins for the storage of gaseous or

supercritical CO2 possess specific characteristics (Keigh-

ley and Maher, 2015). Ideally, these basins comprise sedi-

mentary strata (referred to as reservoirs) that are water-

saturated and permeable, overlain by laterally extensive

layers of low-permeability rocks. Furthermore, these bas-

ins tend to exhibit structural simplicity, characterized by a

scarcity of continuous faults, both laterally and vertically.

Such basins are typically found in mid-continent locations,

exemplified by the Western Canada Sedimentary Basin.

The following sections will detail the essential characteris-

tics of sedimentary basins and sedimentary strata that are

crucial for the successful implementation of CO2 storage in

regions marked by tectonic activity. These key characteris-

tics encompass the geothermal gradient and pressure, reser-

voir thickness, porosity and permeability, salinity, mineral-

ogy, seismicity and faults.

Geothermal Gradient and Pressure

The behaviour of CO2 with respect to its phase is signifi-

cantly influenced by the geothermal gradient and pressure

conditions in geological formations (Bachu, 2003; Bachu

and Adams, 2003). This interplay is a determining factor

for the effective storage and dissolution of CO2 (Keighley

and Maher, 2015). In a scenario with a typical geothermal

gradient of 25 °C/km, and under normal hydrostatic pres-

sure conditions, CO2 transitions into a supercritical state at

an approximate depth of 800 m (Holloway and Savage,

1993). However, it’s important to note that the depth at

which CO2 achieves supercritical conditions can vary

based on factors such as local surface temperature, the spe-

cific geothermal gradient of the region and the local hydro-

static and lithostatic pressures (Bachu, 2003). In most sedi-

mentary basins, the pressure conditions conform closely to

hydrostatic conditions. However, in cases of lithostatic

conditions where pressure is solely attributed to the weight

of the overlying rock, the density of water-saturated over-

burden is employed instead of water density (Bachu and

Adams, 2003).

Surface temperatures within sedimentary basins display

significant global variations, with arctic and sub-arctic bas-

ins experiencing average annual temperatures around 0 °C,

whereas low-altitude tropical basins may exhibit average

annual temperatures of approximately 30 °C (Bachu,

2003). Under standard pressure gradient conditions in sedi-

mentary basins, the maximum attainable CO2 density is ap-

proximately 850 kg/m³ (Bachu, 2003). Consequently, it be-

comes evident that in warmer basins (higher temperate

gradient), higher pressures (or depths) are required to attain

elevated CO2 density when compared to colder basins

(lower temperature gradient).

Reservoir Thickness

The required minimum thickness of a saline aquifer for ef-

fective CO2 storage is typically around 30 m (Intergovern-

mental Panel on Climate Change, 2005). However, it’s im-

portant to note that the actual reservoir thickness needed

can vary significantly depending on factors such as hetero-

geneity, reservoir geometry, porosity, permeability and

fluid properties. Therefore, conducting site-specific geo-

logical assessments and engineering evaluations is crucial

to determining the precise minimum reservoir thickness for

CO2 storage in any given location. This approach ensures

that the storage site meets the necessary criteria for effec-

tive and efficient carbon storage.

Porosity and Permeability

The volume of CO2 that can be effectively stored in a reser-

voir and the efficiency of storage depends on several key

factors, including effective porosity, reservoir area, thick-

ness, lithology and injectivity, which is primarily con-
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trolled by permeability. When supercritical CO2 or CO2-

rich brine is injected into a reservoir, it displaces much of

the existing pore fluid. Storage efficiency, a critical param-

eter, represents the ratio of the volume of CO2 stored to the

maximum pore volume available for CO2 storage.

Permeability, the ability of a rock to transmit fluids, plays a

fundamental role in the injection and dispersion of super-

critical or gaseous CO2 or CO2-rich brine mixtures within

the reservoir. High-permeability reservoirs facilitate more

efficient injection processes. In contrast, insufficient per-

meability or the presence of flow barriers like faults or fine-

grained layers can result in increased fluid pressure near the

injection point, limiting injection rates and the overall

amount of CO2 that can be stored (Bentham and Kirby,

2005).

Porosity and permeability parameters collectively deter-

mine the suitability of a reservoir for CO2 storage, as they

influence storage capacity and injectivity. Successful CCS

projects require careful assessment of these geological and

reservoir characteristics to ensure effective and efficient

storage of CO2.

Salinity

Salinity, often expressed as the concentration of total dis-

solved solids (TDS in ppm), encompasses a wide array of

dissolved substances, including minerals, salts, metals and

organic compounds in subsurface fluids.

The impact of salinity on CO2 storage within saline aquifers

is noteworthy. Saline water can dissolve more CO2 com-

pared to freshwater, thereby increasing the potential for

CO2 storage (Bachu, 2008). Nevertheless, elevated salinity

levels can also trigger the formation of carbonates when

CO2 reacts with minerals in the water, particularly in prox-

imity to injection wells. This mineralization process can re-

duce permeability and, consequently, CO2 storage capacity

(Bachu and Adams, 2003).

In the context of supercritical or gaseous CO2 sequestra-

tion, formation water with higher salinity can cause sepa-

rate-phase CO2 to migrate upwards within the aquifer, po-

tentially escaping through weaknesses in overlying rock

layers. The salinity range conducive to CO2 dissolution in

saline aquifers is typically considered to be between 30 000

and 100 000 ppm. Salinity levels below 30 000 ppm tend to

diminish the CO2 carrying capacity of formation water,

whereas salinity exceeding 100 000 ppm may contain high

concentrations of minerals that react with CO2, leading to

mineralization and a subsequent reduction in permeability.

Careful consideration of salinity levels is crucial for opti-

mizing CO2 storage and minimizing potential migration

risks.

Mineralogy

The interaction of CO2 with brine in aquifers can have mul-

tiple effects, including alterations in the mineral composi-

tion of the reservoir, changes in pH levels, modifications in

the isotopic composition and adjustments in the ion con-

centration of the brine (Pearce et al., 2021). Saline reser-

voirs composed of siliciclastic materials are typically sand-

stone with varying proportions of clay and silicate

minerals. The reactivity of these minerals with CO2 is vari-

able, with quartz and clay demonstrating lower reactivity,

whereas carbonate, plagioclase feldspar and mafic miner-

als tending to be more reactive (Gunter et al., 1993, 1997;

Knauss et al., 2005; Rosenbauer and Thomas, 2010).

The injection of CO2-rich brine mixtures into saline aqui-

fers can induce the dissolution of feldspar and unstable

minerals, subsequently leading to the precipitation of

quartz and/or calcite cement within pore spaces. These ce-

mentitious materials can diminish injectivity, affecting the

efficiency of injection processes (Ang et al., 2022). How-

ever, CO2 injection into siliciclastic formations containing

carbonate minerals (e.g., calcium and magnesium) and

mafic minerals (e.g., basalt-rich strata) can result in signifi-

cant sequestration through mineral trapping over extended

periods, ranging from hundreds to thousands of years

(Amin et al., 2014). These complex interactions underscore

the importance of understanding reservoir fluid chemistry

and mineralogical changes in aquifers during CO2 storage

operations.

Seismicity

The injection of supercritical/gaseous CO2 or CO2-rich

brine mixtures into deep saline aquifers carries the potential

risk of inducing seismic activity if the injected fluids lead to

overpressurization (McGarr et al., 2002; Zoback and

Gorelick, 2012). Elevated injection pressures can enhance

injectivity but also result in increased mechanical stress and

deformation, potentially triggering microseismic events,

reactivating faults, creating new fractures, causing ground

surface uplift and even generating earthquakes (Rutqvist et

al., 2007; Ferronato et al., 2010; Cappa and Rutqvist,

2011). It is important to note that even relatively minor

earthquakes, such as those with a magnitude of 3 or less,

can pose a significant threat to the integrity of CO2 storage

projects (Zoback and Gorelick, 2012).

Therefore, it is imperative to identify pre-existing faults

and take measures to prevent the injection of supercritical/

gaseous CO2 or CO2-rich brine mixtures in close proximity

to these structural features.

Faults

Faults that are either sealed or partially sealed can intersect

potential CO2 storage aquifers leading to complications in
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CO2 storage. These faults may compartmentalize the target

reservoir, adding complexity and cost to the storage project

(Keighley and Maher, 2015). Alternatively, if some of these

faults remain unsealed, they significantly elevate the risk of

fluid leakage. Basins that have undergone multiple tectonic

or deformation events tend to be more heavily faulted and,

as a result, are less suitable for CO2 storage, especially for

supercritical/gaseous CO2 storage (Celia et al., 2015).

Therefore, conducting a structural analysis is imperative

for assessing the potential for fluid leakage throughout the

life cycle of a storage project (Keighley and Maher, 2015).

Conclusions

The increasing concentration of CO2 in the Earth’s atmo-

sphere is significantly impacting the planet by intensifying

the natural greenhouse effect, leading to a warming influ-

ence on the Earth’s surface. This warming trend is associ-

ated with more frequent and intense extreme weather

events, such as heatwaves, tropical cyclones, heavy precip-

itation and flooding, raising concerns among individuals

and communities. Addressing the challenge of reducing

carbon emissions while sustaining and improving living

standards, especially in developing countries, necessitates

cost-effective and innovative solutions. Consequently, the

capture and underground sequestration of CO2 emerges as

one of the most practical and feasible approaches for reduc-

ing CO2 emissions in the short to medium term.

The Lower Mainland of British Columbia (LMBC) has pre-

viously undergone assessments for its hydrocarbon poten-

tial and natural gas storage capacity, revealing it as a prom-

ising and potentially viable site for CO2 storage. However,

despite these initial assessments, there has been a lack of

substantial effort to thoroughly evaluate the feasibility of

carbon capture and storage in the LMBC. The sedimentary

strata located beneath the LMBC, particularly at greater

depths, remain poorly understood, with limited insights

into their geological context, such as interpretations of

depositional environments and facies analysis. Consider-

ing these gaps in knowledge, the objective of this research

is to assess the feasibility of carbon capture and storage in

the LMBC, by investigating several interconnected reser-

voir characteristics, including geothermal gradient and

pressure, reservoir thickness, porosity and permeability

characteristics, salinity, mineral composition, seismic ac-

tivity and fault distribution. Acomprehensive evaluation of

these factors is imperative to ensure the safe and effective

implementation of CO2 sequestration projects in such

regions.
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