Large-Scale Sodic-Calcic Alteration Around Porphyry Copper Systems: Examples from the Highland Valley Copper District, Guichon Batholith, South-Central British Columbia

K. Byrne, University of Alberta, Edmonton, AB, kbyrne@ualberta.ca
G. Lesage, Mineral Deposit Research Unit, The University of British Columbia, Vancouver, BC
S.A. Gleeson, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany
R.G. Lee, Mineral Deposit Research Unit, The University of British Columbia, Vancouver, BC

Introduction

Porphyry Cu deposits are the primary source of Cu globally and, although demand ebbs and flows and recycling is increasing, a pipeline of quality projects and resources is needed to replace decreasing inventories (Seedorff et al., 2005; Sillitoe, 2010; Thompson, 2016). Exploration costs and expenditures have increased approximately threefold during the last 12 years (Wilburn et al., 2015; Wood, 2016), yet discovery rates are down and very few new deposits have been found (Sillitoe, 2013). As a result, exploration is moving into underexplored, high-risk political jurisdictions and beneath cover (systems with no surface expression) in known productive belts, necessitating more effective and efficient exploration methodologies and techniques (Sillitoe, 2013; Schodde, 2014; Wood, 2016).

The volume of hydrothermally altered rocks outboard of economically significant concentrations of Cu-Fe–sulphide minerals is termed the porphyry footprint. An understanding of the fluid types that can be present during porphyry Cu formation, how they manifest in the footprint and their spatial distribution with respect to Cu-mineralized portions of the system is critical to developing better exploration tools. This work is part of the Porphyry Copper Footprints Subproject of the Canada Mining Innovation Council (CMIC) and Natural Sciences and Engineering Research Council of Canada (NSERC). Its purpose is to investigate the petrophysical, structural, mineralogical, geochemical and isotopic footprints of the porphyry Cu (±Mo) deposits in the Highland Valley Copper (HVC) district of south-central British Columbia (BC; Figure 1). The Teck Highland Valley Copper Partnership (‘Highland Valley Copper’) is wholly owned and operated by Teck Resources Limited. The district contains proven and probable reserves of

Keywords: British Columbia, Guichon batholith, Highland Valley Copper, actinolite, albite, alteration, epidote, Na-Ca, nonmagmatic, porphyry Cu, seawater, sodic-calcic

This publication is also available, free of charge, as colour digital files in Adobe Acrobat® PDF format from the Geoscience BC website: http://www.geosciencebc.com/s/DataReleases.asp.

Figure 1. Simplified geology of the Quesnel terrane in southern British Columbia. Geological data from Massey et al. (2005). Blue outline indicates the area shown in Figure 2a.
477 200 tonnes at 0.29% Cu and 0.007% Mo (Teck Resources Limited, 2016).

Four major porphyry Cu (±Mo) systems, hosted in various intrusive facies of the Late Triassic Guichon batholith, occur in the HVC district (Figure 2a). Exposure and airborne magnetic data indicate that the batholith has an oval shape, elongate to the northwest, with a long axis of approximately 60 km and a short axis of 25 km. Due to its size and low degree of exposure (~3%), the HVC district is a realistic natural laboratory in which to investigate the large-scale footprint of porphyry Cu deposits, integrate disparate geological and geochemical datasets, and develop new methodologies and genetic understanding to aid modern exploration geoscientists.

Two field seasons of mapping and sample collection have been completed. Whole-rock lithogeochemistry, representative rock slabs and thin sections have been processed and analyzed for mineralogy and paragenesis. McMillan (1976, 1985) described argillic and propylitic alteration at HVC; however, the district-scale footprint of sodic-calcic (Na-Ca) alteration had not been recognized in the Guichon batholith before the current study (Figure 2b). This paper presents a description of the Na-Ca alteration in the Guichon batholith and outlines the research question concerning its genesis.

Geological Setting

Regional Geology

The Quesnel terrane in the Canadian Cordillera is characterized by Mesozoic island-arc assemblages comprising volcanic and sedimentary rocks and associated intrusions. The most important rocks for this study are the Late Triassic Nicola Group and the Guichon batholith (Coney et al., 1980; Logan and Mihalynuk, 2014). The Nicola Group consists primarily of andesitic submarine volcanic and associated volcano-sedimentary rocks of island-arc affinity (Preto, 1979; Mortimer, 1987; Ray et al., 1996) that were deposited in a rifted marine basin above an east-dipping subduction zone (Colpron et al., 2007). The I-type, low-K tholeiitic to medium-K calcalkalic Guichon batholith (Figures 1, 2a; Northcote, 1969; McMillan, 1976; D’Angelo, 2016) intruded the ca. 238–202 Ma Nicola Group between 2011b; D’Angelo, 2016). The Nicola Group was intruded by the Nicola Group rocks of between 3 and 6 km (Preto, 2014). A 4–5 km emplacement depth for the Valley-Lornex porphyry system (Figure 3) is also consistent with stratigraphic-thickness estimates for southern Quesnel Nicola Group rocks of between 3 and 6 km (Preto, 1979). At depths greater than approximately 4 km, a single-phase supercritical fluid (of moderate salinity, ~10%) would likely have been stable, possibly leading to mineralization styles and an alteration footprint that are atypical of porphyry environments (Rusk et al., 2008; Richards, 2011b; D’Angelo, 2016). The exposure and prevalence of Na-Ca alteration indicates a deep level of erosion (Figure 3; Seedorff et al., 2008; Halley et al., 2015).

Sodic-Calcic Footprint and Characteristics

Field mapping of domains of high vein density (>0.5 cm/m) highlights fluid pathways within the district (Figure 2b). The Na-Ca facies in the Guichon batholith consists primarily of light green epidote veins with haloes of albite ± fine-grained white mica ± epidote ± chlorite ± actinolite (Figures 4, 5). A key characteristic of the Na-Ca facies is the selective replacement of primary K-feldspar by secondary albite ± fine-grained white mica. Within Na-Ca haloes, primary mafic minerals are replaced by chlorite and localized actinolite, with accessory titanite (Figure 5g). Sodic-calcic veins and haloes occur in ~0.5–2 km wide, northeast- and northwest-trending domains that extend along trend from Cu centres for up to 7 km in a nonconcentric pattern (Figure 2b). At the Bethlehem porphyry centre, Na-Ca alteration is most common at depth beneath biotite-altered and Cu-mineralized breccias but is exposed at higher elevations in structurally controlled domains in the
Figure 2. a) Geology of the Guichon batholith (modified after McMillan et al. [2009], Teck Resources Limited and Canada Mining Innovation Council work in the district); also shown is a simplified Cu-occurrence facies interpretation based on compilation of public-domain BC assessment-report data; the blue frame indicates the area shown in Figure 2b.

b) Distribution of Na-Ca alteration facies in the Guichon district, based on mapped vein and alteration-halo density of greater than ~5 cm/m; the 'v' pattern indicates mafic rocks, whereas the coarse 'X' pattern indicates the more felsic rocks in the district.
west and south pit walls. Some isolated domains of Na-Ca facies occur in mafic Border facies rocks. Individual vein orientations are similar to the trend of the larger alteration domains. Outcropping Na-Ca-altered rocks are typically white and fractured, and contrast with surrounding wallrock (Figures 4a, b). Isolated veinlets with narrow haloes, however, are less conspicuous (Figure 4c). Epidote veins typically have an irregular morphology and diffuse walls, and can vary in thickness along strike and down dip (Figures 4c, d). In all examples, K-feldspar is altered to albite within the alteration halo (e.g., Figures 5a–d), whereas plagioclase appears to be less susceptible and only albitized within intense alteration haloes (Figure 5e). Alteration haloes typically range in width between 0.5 and 2 cm but can be up to 1 m wide on large veins. More pervasive albite alteration, locally accompanied by actinolite and relic garnet (mostly retrograded to pumpellyite and chlorite) formed close (150–1000 m) to the porphyry-Cu centres and stocks (Figures 2b, 4b). In hand sample, albite haloes are opaque and the primary twinning and lamellae in igneous feldspars are absent. In thin section, albite-altered feldspar is turbid and associated with coeval, disseminated, fine-grained (~5–10 μm) white mica and microporosity (Figures 5f, g).

Prehnite veinlets (±epidote) with plagioclase-destructive white mica–prehnite haloes (±chlorite-vermiculite in hornblende and biotite) constitute the most abundant and widespread alteration facies in the Guichon batholith. The K-feldspar is generally stable within prehnite-vein alteration haloes (Figures 5c, d). Initial shortwave-infrared spectral analysis (TerraSpec 4) of this facies identified a mixed spectrum of white mica (illite), prehnite and subordinate chlorite. Hyperspectral analysis of rock slabs, completed by P. Lypaczewski (CMIC Ph.D. student, University of Alberta), more clearly showed prehnite morphology (vein-fill and disseminated grains in the halo) in rock slabs, and its distribution in the HVC district. Prehnite in rock slabs varies from opaque to light mint-green or dark green and the mineral is susceptible to amaranth stain after etching with HF (Figure 5d). In hand sample, plagioclase altered to white mica is typically pale mint-green in colour. In thin section, small grains (20–100 μm) of prehnite and more abundant fine-grained clusters (5–20 μm) of white mica occur together in altered plagioclase crystals. Prehnite veins exhibit a wide range of orientations throughout the batholith. Prehnite veinlets and their associated white mica–chlorite alteration commonly refracture and overprint earlier-formed veins and haloes, resulting in complex alteration patterns in hand sample.

Paragenetic Sequence

Most of the Na-Ca alteration appears to have occurred between the main stages of Cu introduction in the HVC district (Figure 6). Sodic-calcic alteration overprinted biotite–K-feldspar–bornite–chalcopyrite veins and alteration, and magmatic-hydrothermal breccia, in the Bethlehem system (Figure 4e; Byrne et al., 2013). Narrow (0.2–1 cm) K-feldspar fracture haloes, with and without trace chalcopyrite patina, are found up to 4 km away from the Valley-Lornex and Highmont Cu centres (Lesage et al., 2016). These early-mineral K-feldspar fracture haloes were overprinted by Na-Ca veins at most locations. Locally within the Highmont porphyry Cu centre, however, quartz–chalcopyrite–K-feldspar veinlets appear to crosscut epidote veins with albite haloes (Figures 5a, b). Main-stage veins containing quartz, coarse muscovite and Cu-Fe–sulphide crosscut epi-
Figure 4. a) Fresh roadcut exposure of Na-Ca alteration in the northeastern part of the batholith. b) Intense albite–white-mica alteration above the Bethlehem pit; note the highly fractured Na-altered domain compared to the blocky fracture pattern of a late-mineral dike on the left side of the image. c) and d) Examples of epidote veins with albite haloes hosted in Guichon granodiorite. e) Drillcore from the centre of the Jersey (Bethlehem) porphyry system, showing biotite veins and alteration, and Cu mineralization overprinted by intense albite and epidote-albite (hematite stained); the Na-Ca facies is Cu-grade destructive and leaches Fe. f) Preminerl quartz and feldspar porphyry stock at Highmont crosscut by albite-fracture haloes (white coloured), which are in turn cut by coarse muscovite-bornite veins. Mineral abbreviations: bn, bornite; bt, biotite; ep, epidote.
dote veinlets with albite haloes and pervasive albite-altered rocks (Figure 4f) at Valley-Lornex and Highmont. North and east of Bethlehem, rare tourmaline veinlets, with and without haloes of K-feldspar or intense white mica, are overprinted by epidote veins with albite–white mica haloes (Figure 5h). Sodic-calcic–altered rocks are crosscut by prehnite veinlets with plagioclase-destructive white mica haloes (Figures 5c, d) but still have distinctive major- and minor-element enrichments and depletions: elevated Na$_2$O, CaO and Cl; a decrease in K$_2$O and FeO; and high Na/Ba and Sr/Ba (e.g., Figure 5e).

Discussion

The recognition and study of the Na-Ca alteration assemblage is important because

- mapping has shown that large domains of strongly Na-Ca–metasomatized rocks are along strike of the porphyry Cu centres (Figure 2b);
- it locally removed magnetite and hornblende, thus changing the rock petrophysical properties; and
- where it overprinted Cu mineralization, it is destructive of the Cu grade.

Isotope and fluid-inclusion studies have shown that meteoric (Sheets et al., 1996; Taylor, 1979; Selby et al., 2000), formational brine (Dilles et al., 1992) and magmatic-derived (Dilles et al., 1992; Harris et al., 2005; Rusk et al., 2008) fluids of varying salinities can all be present in various proportions at different locations and times in an evolving porphyry system. Additionally, sericite at Koloula and Waisoi in Papua New Guinea is interpreted to have formed from seawater in young (1.5–5 Ma) and shallowly emplaced porphyry systems (Chivas et al., 1984). Similarly, calculated initial O and D isotopic compositions of coarse muscovite from the Valley system at HVC suggest mixing of seawater with high-temperature (370–500°C), Cu-bearing magmatic fluids (Osatenko and Jones, 1976).

Widespread Na-Ca alteration may be caused by the flow of external hypersaline formation waters, heated during inward flow to the magmatic cupola regions along the margins of potassic alteration (Dilles et al., 1992; Dilles et al., 2000). Highly oxidized felsic magmas can produce fluids capable of Na-, Fe-, Ca- or K-rich alteration (Arancibia and Clark, 1996). Similarly, fluids evolved from special alkaline melts can cause Na metasomatism (Lang et al., 1995). The magmatic-derived Na-Ca–alteration examples, however, are inconsistent with the scale and distribution features of Na-Ca alteration in the Guichon batholith. Sodium-rich alteration is widely developed in Permain to Jurassic arc igneous rocks of the western United States, where it is attributed to moderate- to high-salinity fluids of marine, formation and/or meteoric origin, with or without a magmatic component (Battles and Barton, 1995). The hypothesis that will be tested in this study is that seawater drawn down and inward along regional structures toward cupola regions caused Na-Ca alteration during the upwelling of the magmatic-hydrothermal fluids that formed the porphyry Cu mineralization. If this is the case, this process may be more prevalent in island-arc porphyry systems than previously recognized.

This hypothesis will be tested using a combination of field and laboratory techniques. First, field maps, feldspar-stained rock slabs, hyperspectral images and petrography will be used to establish the Na-Ca facies distribution, mineralogy and its paragenesis at HVC. This will be followed by geochemical characterization by electron microprobe analysis (EMPA) and laser-ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) of the associated minerals (epidote, albite, actinolite, titanite). Results will be compared to Na, Ca and Na-Ca assemblages in other systems: Yerinton, Anne-Mason and Royston in Nevada (Carten, 1986; Dilles and Einaudi, 1992); Sierrita-Esperanza and Kelvin-Riverside in Arizona (Seedorff et al., 2008); and Island Copper, Mt. Milligan, Gulf of Cortez and Woodjam in BC (Arancibia and Clark, 1996; Jago et al., 2014; Chapman et al., 2015; Kobylinski et al., 2016). Whole-rock 87Sr/86Sr values of unaltered samples will be compared to the Sr-isotope composition of strongly Na-Ca–altered samples to test for shifts from initial HVC magmatic compositions of 0.7034 (40Ar/36Ar) to Triassic seawater values of ~0.7076 (Tremba et al., 1975). Additionally, the Sr, O and D isotope compositions of epidote, albite and actinolite will be measured and evaluated with respect to magmatic and other fluid-reservoir (e.g., meteoric and seawater) compositions. Minerals formed from magmatic fluids are expected to have initial 18O and dD values close to 6° and -60°, respectively (Taylor, 1979), whereas minerals formed from a fluid with seawater input may move toward the composition of standard mean ocean water (SMOW; $\sim 0^\circ$ for both 18O and dD).

Figure 5. a) Epidote vein with albite halo in Skeena granodiorite crosscut by a quartz–K-feldspar–chalcopyrite veinlet. b) Feldspar-stained image of photo (a); dark yellow indicates K-feldspar and pink indicates calcic plagioclase; weak pink-stained to white plagioclase is associated with fine-grained, pale green, white mica and small grains of prehnite. c) and d) Epidote-quartz vein with K-feldspar–destructive albite halo crosscut, offset and overprinted by a prehnite veinlet with strong white mica–prehnite–chlorite halo; hostrock is Chataway-facies granodiorite. e) Irregular epidote veinlets with albite-chlorite haloes in Guichon granodiorite, also showing lithogeochemical response of the corresponding sample. f) Photomicrograph of albite- and white mica–altered feldspar and actinolite-epidote–altered hornblende in Guichon granodiorite; tourmaline vein fill is crosscut by epidote. g) Back-scattered electron image of partially actinolite–altered primary hornblende; note accessory titanite; primary feldspar is altered to albite and contains numerous disseminated inclusions of white mica and very fine grained pore space (black). h) Fragments of tourmaline in compositionally zoned (Fe-Al substitution) epidote. Mineral abbreviations: ab, albite; act, actinolite; ccp, chalcopyrite; chl, chlorite; ep, epidote; fsp, feldspar; hbl, hornblende; kfs, K-feldspar; pl, plagioclase; prh, prehnite; qz, quartz; ttn, titanite (sphene); tur, tourmaline; wm, white mica.
Impact of Proposed Work

Porphyry Cu deposits provide the world with most of its Cu and have likely been the focus of more academic research than any other class of base-metal deposit. Significant advances in genetic understanding of porphyry systems, at various scales, have been made. Exploration tools and models (e.g., Holliday and Cooke, 2007) applicable to the exploration geoscientist, however, have not advanced to the same degree, with a few notable exceptions: fertility (Richards, 2011a; Loucks, 2014); epidote-vector geochemistry (Jago, 2008; Cooke et al., 2014); lateral and vertical metal zonation (Jones, 1992; Halley et al., 2015); shortwave-infrared spectroscopy (Thompson et al., 1999; Halley et al., 2015); and porphyry-indicator minerals (Averill, 2011).

The research outlined in this paper is designed to test for evidence of nonmagmatic fluid flow around porphyry Cu deposits, and how these fluids interacted with and affected wallrock with increasing distance from the Cu centres. The nonconcentric distribution of Na-Ca alteration is an important modifier to typical alteration-zonation models. Results from this research have the potential to refine exploration models and leverage existing datasets, thus leading to more cost-efficient and successful exploration programs.

Acknowledgments

Funding was provided by the Natural Sciences and Engineering Council of Canada (NSERC) and the Canada Mining Innovation Council (CMIC) through the NSERC Collaborative Research and Development Program, for which the authors are grateful (NSERC-CMIC Exploration Footprints Network Contribution 115). Additionally, the authors thank the Strategic Planning Group at HVC and Teck Resources Limited for support during the summer fieldwork periods. This contribution benefited from review by L. Marshall, Regional Chief Geoscientist at Teck, and L. Pyrer.

References

