Tectonic and eustatic controls on the distribution of sandstone and hot mudstone: the Goodrich-Shaftesbury transition,
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= The Base of Fish Scales Marker and the origin of hot mudstones
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Allomembers show no clinoform geometry, nor do they lap out onto a single Viking.allomen The Base of Fish Scale Marker (BFSM) has a very prominent 'hot' signature in gamma ray logs, and is a basin-wide log marker (Fig. 4). Towards the
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Fig. 1 Isopach map of the total thickness of Viking allomember VD, plus
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Formation) in northeastern British Columbia showing location of cross-section .
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